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Abstract: Parkinson’s disease is a common movement disorder associated primarily with oxidative stress-
mediated degeneration of dopaminergic neurons. Earlier studies showed that Sorghum bicolor-based
supplement (SbS) exhibited antioxidant and neuroprotective activities and might likely rescue the death of
dopaminergic neurons in Parkinson’s disease. This study examined the effect of SbS on rotenone-induced
Parkinsonian-like motor deficits in rats and the involvement of oxidative stress and pro-inflammatory
cytokines. Rats were divided into six groups and treated orally with sunflower oil (vehicle-control), rotenone
(2.5 mg/kg) alone or in combination with each dose of SbS (50, 100, and 200 mg/kg) and carbidopa (10 mg/kg)
on an alternate day for 28 days. The changes in motor functions were evaluated on day 28 and the brain
concentrations of oxidative stress biomarkers and pro-inflammatory cytokines (tumor necrosis factor-alpha
and interleukin-6) were determined. Rotenone caused motor deficits by impaired locomotor activity in the
open field test and induced catalepsy in the bar test, which were attenuated by SbS. Rats pretreated with SbS
had reduced brain levels of malondialdehyde, nitrite, and pro-inflammatory cytokines compared to rotenone
controls. 100 mg/kg and 200 mg/kg SbS mitigated rotenone-induced depletion of reduced glutathione and
antioxidant enzymes in the rat brain. The results suggest that SbS ameliorated rotenone-induced Parkinsonian-
like motor dysfunctions by reducing neuronal oxidative stress and pro-inflammatory cytokines in rats.

Introduction

Parkinson’s Disease (PD) has been described as one of the most common neurodegenerative disorders after
Alzheimer’s disease (AD), which is characterized by the loss of dopamine neurons in the substantia nigra and
the presence of Lewy bodies in surviving dopaminergic neurons [1, 2]. The motor symptoms of PD include
tremors at rest, muscle rigidity, slowness of movement and postural instability [3, 4]. As PD progresses,
walking becomes a difficult task for the patient due to postural instability and the tendency to fall. Thus, in
the long term, the quality of life of the patient is grossly impaired and he becomes dependent on others for
daily activities [5]. Oxidative stress and inflammation are strongly implicated in the pathophysiology of PD
and the progression of the illness [5, 6]. For example, oxidative stress has been identified as the prime factor
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in initiating cellular injury and death of dopaminergic neurons in PD [7, 8]. Studies have reported elevated
levels of oxidative stress in postmortem brain tissue of patients with PD, including increased cholesterol lipid
hydroperoxides in the substantia nigra [9-12]. Increased cytoplasmic 8-hydroxy-guanosine immunoreactivity
and oxidative damage to several brain mitochondrial complex | proteins accompanied by decreased
glutathione in neurons of the substantia nigra have been reported [12, 13]. The findings of reduced antioxidant
molecules and high concentrations of oxidized lipids and protein in the brains of individuals with PD further
confirmed the key role of oxidative stress in the pathology of the illness [6, 12, 13,]. Oxidative stress-mediated
injury to neuronal cells evokes the release of pro-inflammatory cytokines, thereby linking oxidative stress and
inflammation as co-conspirators in the pathogenesis of PD [2, 5, 14, 15]. The key role of oxidative stress and
neuroinflammation in the pathophysiology of PD has also been reinforced by the findings that rotenone, a
neurotoxin, is widely used to replicate the behavioral and biochemical changes including synucleinopathies
akin to PD pathology. Specifically, rotenone is known to cause Parkinsonian-like symptoms through the
formation of free radicals that lead to impairment of mitochondrial electron transport machinery [3]. Thus, it
has been proposed that since a multifactorial cascade of pathogenic events triggered by oxidative stress causes
cell death in PD, the neuroprotective strategy might be a better option for treating PD [14, 16]. Accordingly,
oxidative and neuroinflammation have become important advancements and promising targets, with
antioxidant and anti-inflammatory agents as promising, reliable therapeutic interventions [17, 18].

Sorghum bicolor-based supplement (SbS) is a supplement obtained from the leaf sheath of Sorghum bicolor
(Poaceae) that has been shown to exhibit potent antioxidant, neuroprotective and anti-inflammatory activities
[19-21]. SbS improved neurological deficits in rats with ischemic stroke through the reduction of brain
contents of pro-inflammatory cytokines and expression of NF-kB immunopositive cells [22, 23). In a recent
study using Drosophila melanogaster, SbS extended the lifespan and improved the motor function of the flies
through augmentation of the antioxidant status [23]. In this present study, we examined the effect of SbS on
rotenone-induced Parkinsonian-like motor deficits in rats and the probable involvement of oxidative stress,
and pro-inflammatory cytokines.

Materials and methods

Chemicals: Rotenone, thiobarbituric acid (TBA) were purchased from Sigma Aldrich (Germany), 5,5’-dithio-
bis-2-nitrobenzoic acid (Ellman’s reagent) and acetylthiocholine iodide from Sigma Aldrich (USA). ELISA
kits for rats' tumour necrosis factor-alpha and interleukin-6 from Biolegend (USA). The levodopa-cabidopa
(LC-CD) was a product of Merck & Co, Inc (USA).

Experimental animals: Male Wistar rats (weight: 170 g - 200 g, age: 10-13 weeks) used in this study were
obtained from the Central Animal House, University of Ibadan, Nigeria. Rats were acclimatized in the
Department of Pharmacology and Therapeutics Animal Holding Facility for two weeks before the study. They
were housed in cages with free access to a standard rodent pellet diet (Vital Feeds, Jos, Nigeria) and water ad
libitum. The procedures were by the National Institute of Health (NIH Publication No 8523, revised 1981)
guidelines for the Care and Use of Laboratory Animals and approval was obtained from the University of
Ibadan Animal Care and Use Research Ethics Committee (UI-ACUREC/20/0055).

Preparation of SbS and rotenone: SbS was obtained from Health Forever Products Ltd, Lagos, Nigeria and
was prepared as described [20]. Briefly, on the experimental day, 250 mg of SbS was dissolved in 25 mL of
water to obtain 10 mg/mL. The doses of 50, 100 and 200 mg/kg were selected based on an earlier study [22].
Rotenone was prepared according to a previous study [24]. Thus, rotenone was initially dissolved in dimethyl
sulfoxide (DMSO) and the solution was diluted in sunflower vegetable oil to obtain 0.25 mg per mL. The
intraperitoneal dose of 2.5 mg/kg of rotenone was chosen based on an earlier study [24].
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Effect of SbS on rotenone-induced Parkinsonian-like symptoms in rats: The effect of SbS on rotenone-induced
Parkinsonian-like symptoms was studied in rats according to a previous study [24]. Thus, rats were randomly
divided into six groups (n=7). Rats in group 1, which served as vehicle control, received sunflower oil (10
mL/kg, p.o.), group 2 had sunflower oil (rotenone control), groups 3-5 were pre-treated SbS (50, 100 and 200
mg/kg, p.o.) while the last group received LC-CD (10 mg/kg, p.o.), daily for 28 days. 30 min after each
pretreatment, rats in groups 2-6 received rotenone (2.5 mg/kg, i.p.) on alternate days for 28 days. Afterward,
the test for locomotion and catalepsy using an open field and bars, respectively, were carried out to evaluate
the motor functions of the rats on day 28.

Procedures for evaluation of motor functions

Test for spontaneous motor activity (SMA): The SMA was assessed using an open-field test. The open-field
apparatus consists of plywood (72x72x36 cm) with the floor divided into sixteen squares, 18x18 cm [25]. The
rats were placed individually at the center of the chamber, and the number of lines crossed, and duration of
ambulation were recorded for five minutes using a video camera [25].

Test for catalepsy: The effect of SbS on rotenone-induced catalepsy was investigated according to the
modified method [26]. The test was done by placing the forelimbs of each rat on a horizontal plane wood
surface (H: 6, W: 4, and L: 16 cm) and the duration of akinesia (the period the rat remained in one position,
before initiating any active movement) was recorded for five minutes.

Preparation of brain tissues for biochemical assays: Immediately after the behavioral studies, the rats were
euthanized using diethyl ether and each of the isolated brains was weighed and rinsed with 10.0% w/v sodium
phosphate (0.1 M; pH 7.4). Each brain tissue was homogenized and centrifuged, and the supernatant was
collected for the biochemical parameters [22].

Estimation of striatal oxidative stress biomarker and nitrite content: The malondialdehyde (MDA) contents
in the striatum were estimated using the procedure of thiobarbituric reacting substance (TBARS) [27]. The
striatal MDA content was calculated using a molar extinction coefficient of 1.56x10.0° per M per cm and
expressed as umol MDA per g tissue. The determination of nitrite content is estimated as described [28]. The
absorbance was read at 540 nm and the nitrite in the striatum was estimated from the standard curve of sodium
nitrite (0.0 M-100 M).

Estimation of striatal antioxidant biomarkers: The brain-reduced glutathione (GSH) was assayed as described
previously and expressed as uM GSH per g tissue [29]. The method described by Goth [30] was utilized for
the determination of catalase activity and expressed as pmoles of hydrogen peroxide decomposed (Unit/mg
protein). A method of Misra and Fridovich [31] was used for the estimation of superoxide dismutase (SOD)
activity (Unit/mg protein). Protein content was estimated using the procedure of Lowry et al. [32].

Determination of tumor necrosis factor-alpha (TNF-a) and interleukin-6 (IL-6) contents: The brain
concentrations of TNF-o and IL-6 were determined using ELISA Kkits according to the manufacturer’s
instructions guide. The concentrations were determined from their standard curves respectively and expressed
as pg/mg protein.

Statistical analysis: After normality and homogeneity data checks, data were expressed as mean+S.E.M, and
analyzed using Graph Pad Prism software version 9.00 (San Diego, CA, USA). The analysis of data was done
using one-way ANOVA, followed by Bonferroni post-hoc test. A p-value less than 0.05 was considered
significant.
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Results

SBS reduces rotenone-induced locomotor deficits: The effects of SbS on rotenone-induced Parkinsonian-like
motor features in rats are shown in Figures 1 and 2. Figure 1 showed that 2.5 mg/kg rotenone reduced the
distance traveled [Fs, 18=46.84, p<0.001] and the speed [Fs, 18)=34.69, p<0.001] in navigating the open field
chamber relative to controls. As shown in Figure 2, 2.5 mg/kg rotenone increased the freezing episodes
(periods in which the rat stops movement) [Fs, 18)=26.09, p<0.001] and the freezing time (period of absence
of movement) [F(s, 18) =74.12, p<0.001], and the number of lines crossed when compared with controls [F(s,
18)=98.72, p<0.001]. However, an oral administration of 100 mg/kg and 200 mg/kg SbS or 10 mg/kg LC-CD
significantly improved rat motor functions when compared with rotenone (Figures 1 and 2).

Figure 1: Sorghum bicolor supplement improves motor functions in rats exposed to rotenone

OFT (Mean Speed)
OFT (DISTANCE)

3 VEH (10 mL/kg)

== VEH + ROT (2.5 mg)

B3 Sbs (50 mgl/kg) + ROT
oo SbS (100 mglkg) + ROT
B3 SbS (200 mg/kg) + ROT
3 LD-CD (10 mglkg) + ROT

3 VEH (10 mL/kg)

mm VEH + ROT (2.5 mg)

E3 Sbs (50 mg/kg) + ROT
OO SbS (100 mg/kg) + ROT
B3 SbS (200 mg/kg) + ROT
B3 LD-CD (10 mg/kg) + ROT

2

o o
o o
@ 5

Distance (m)
Mean Speed (m°)
o °
o °
5 S

o
o
<]

Treatments

Treatments

OFT (Maximum Speed)

3 VEH (10 mL/kg)
mm VEH + ROT (2.5 mg)
10 E3 SbS (50 mg/kg) + ROT
O SbS (100 mg/kg) + ROT
B SbS (200 mg/kg) + ROT
E3 LD-CD (10 mg/kg) + ROT

o
®

*

Max. Speed (m?)

Treatments

Bars are mean=S.E.M. #p<0.05 versus vehicle, "p<0.05 versus rotenone (ANOVA followed by Bonferroni post-hoc test)
VEH=vehicle, SbS=Sorghum bicolor supplement, LD-CD=levodopa-carbidopa

Figure 2: Sorghum bicolor supplement mitigated rotenone-induced freezing behaviors and impaired rat locomotion
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Bars are mean+S.E.M. #p <0.05 versus vehicle, "p<0.05 versus rotenone (ANOVA followed by Bonferroni post-hoc test)
VEH=vehicle, SbS=Sorghum bicolor supplement, LD-CD=Ilevodopa-carbidopa

SBS attenuates rotenone-induced catalepsy: In Figure 3, intraperitoneal injection of 2.5 mg/kg rotenone
caused catalepsy, evidenced by a significant increase in latency to initiation of movement relative to control.
An oral dose of 200 mg/kg SbS or 10 mg/kg LC-CD highly significantly prevented catalepsy relative to the
rotenone group [F, 36=19.36, p<0.001]. In Figure 3, lower doses of 50 mg/kg ShS to 100 mg/kg SbS could
not alter rotenone-induced cataleptic condition.

SBS decreases brain malondialdehyde (MDA): Intraperitoneal injection of 2.5 mg/kg rotenone significantly
elevated MDA concentrations of the hippocampus (HIP), prefrontal cortex (PFC) and striatum (STR) regions
of rats relative to the control (Figure 4). As presented in Figure 4, 100 mg/kg and 200 mg/kg of SbS or 10
mg/kg LC-CD given orally significantly suppressed MDA concentrations in these brain regions of rotenone-
treated rats. [HIP: Fs, 20=15.36, p<0.001; PFC: Fs, 20=9.688 p<0.001; STR: F(s, 20)=7.446, p<0.001].

SBS increases glutathione (GSH) in rotenone-treated rats: As presented in Figure 5, 2.5 mg/kg rotenone
significantly decreased GSH levels in the hippocampus and striatum of rats relative to the control. Though,
100 mg/kg and 200 mg/kg SbS or 10 mg/kg LC-CD significantly mitigated rotenone-induced GSH depletion
(Figure 5) [HIP: Fs,20=14.79, p<0.001; STR: F(s,21)=14.37, p<0.001].

Figure 3: Sorghum bicolor supplement attenuates rotenone-induced catalepsy in rats
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Figure 4: Sorghum bicolor supplement decreases rotenone-induced elevation of malondialdehyde (MDA)
content in the hippocampal, prefrontal cortex, and striatum regions of rats
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VEH=Vehicle, SbhS=Sorghum bicolor supplement, LD-CD=Levodopa-carbidopa
Figure 5: Sorghum bicolor supplement elevates glutathione (GSH) levels in the hippocampus
and striatum of rats treated with rotenone
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SBS boosts neuronal antioxidant activity in rotenone-treated rats: The effects of SbS on antioxidant enzymes
(superoxide dismutase-SOD and catalase) in specific brain regions of rats injected with rotenone are presented
in Figures 6 and 7. Intraperitoneal dose of rotenone (2.5 mg/kg) caused significant suppression of SOD and
catalase activities in specific brain regions of rats when compared with control. Though, 100 mg/kg and 200
mg/kg SbS or 10 mg/kg LC-CD significantly increased SOD and catalase activity (Figure 6 and 7) [F,

50=113.9, p<0.001].

Figure 6: Sorghum bicolor supplement increases prefrontal cortex, and striatum superoxide

1.0-

o o
o ®
1 1

SOD (U/mg protein)
o
D
1

0.2+

Adeleke et al. (2024) Mediterr J Pharm Pharm Sci. 4 (3): 15-26.

JH *

SOD

Treatments

1%

dismutase (SOD) in rats exposed to rotenone

NEB[DEEA

/

VEH (10 mL/kg)

VEH + ROT (2.5 mg)
SbS (50 mg/kg) + ROT
SbS (100 mg/kg) + ROT
SbS (200 mg/kg) + ROT
LD-CD (10 mg/kg) + ROT

20



Mediterranean Journal of ’r@
Pharmacy & Pharmaceutical Sciences ISSN: 2789-1895 online
www.medjpps.com ISSN: 2958-3101 print

Bars are mean+S.E.M. #p<0.05 versus vehicle. “p<0.05 versus rotenone (ANOVA followed by Bonferroni post-hoc test)
VEH=Vehicle, SbS=Sorghum bicolor Supplement, LD-CD=Levodopa-carbidopa
Figure 7: Sorghum bicolor supplement increases hippocampal, prefrontal cortex, and striatal catalase
(CAT) activity of rats treated with rotenone
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SBS reduces nitrite contents of rotenone-treated rats: In Figure 8, 2.5 mg/kg rotenone significantly increased
nitrite concentrations in the hippocampus, striatum and prefrontal cortex of rats compared with the controls.
However, 100 mg/kg and 200 mg/kg SbS or 10 mg/kg LC-CD significantly reduced nitrite contents in these
brain regions of rats relative to rotenone (Figure 8) [HIP: F,20=12.87, p<0.001; PFC: F,20=17.29, p<0.001;
STR: Fs,21)=53.08, p<0.001].

Figure 8: Sorghum bicolor supplement decreases hippocampal, prefrontal cortex, and striatal
nitrite concentrations of rotenone-treated rats
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Bars are mean+S.E.M. #p<0.05 versus vehicle. “p<0.05 versus rotenone (ANOVA followed by Bonferroni post-hoc test)
VEH=vehicle, SbS=Sorghum bicolor supplement, LD-CD=Ilevodopa-carbidopa

SBS reduces tumornecrosis factor-a and interleukin-6 contents of rats given rotenone: Rotenone in a dose of
2.5 mg/kg caused a significant increase in the concentrations of pro-inflammatory cytokines (TNF-a and IL-
6) in the striatum, prefrontal cortex, and hippocampus of rats relative to controls (Figures 9 and 10). However,
100 mg/kg and 200 mg/kg SbS given significantly reduced the concentrations of these pro-inflammatory
cytokines in these brain regions of rats relative to rotenone (Figures 9 and 10).

Figure 9: Sorghum bicolor supplement reduces striatal, prefrontal cortex, and hippocampal tumor necrosis
factor (TNF-a) contents of rats exposed to rotenone
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Figure 10: Sorghum bicolor supplement reduces prefrontal cortex and hippocampal interleukin-6 (IL-6)
levels of rats exposed to rotenone
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Bars are mean+S.E.M. #p<0.05 versus vehicle. “p<0.05 versus rotenone (ANOVA followed by Bonferroni post-hoc test)
VEH=vehicle, SbS=Sorghum bicolor supplement, LD-CD=Ilevodopa-carbidopa

Discussion

It is well established that intraperitoneal injection of rotenone induces parkinsonian-like motor deficits
characterized by impaired locomotion, catalepsy and postural instability in rodents [3, 33-36]. Thus, it has
served as an animal model widely used for the evaluation of novel agents with potential antiparkinsonian-like
activity [3, 34-36]. In this study, the video analysis in the open field test confirmed that rotenone caused
impairment of locomotor deficits in rodents, evidenced by reduced distance traveled, number of lines crossed,
navigational speed and increased freezing episodes/freezing time in the open field chamber. However, SbS at
high doses attenuated rotenone-induced locomotor deficits in rats, suggesting potential benefits in
ameliorating the motor symptoms associated with PD. Indeed, impairment of motor functions is a prominent
feature of patients with PD and rats treated with rotenone [3, 4, 8, 35]. This impairment results in a reduction
in voluntary movements and difficulty in initiating movement (akinesia) due to muscle rigidity [3]. The test
for catalepsy is a common neurobehavioral feature that is widely measured in rodents that closely resemble
akinesia in persons suffering from PD [37]. Catalepsy is defined as a state of motor dysfunction leading to
difficulty in initiating voluntary movement characterized by the tendency of the limbs of the rats to remain in
whatever position they are placed [37]. The results of the current study also support earlier investigation [37]
which showed that intraperitoneal injection of rotenone-induced marked cataleptic behavior in rodents. Thus,
the findings that SbS attenuated rotenone-induced catalepsy further suggest that it might offer beneficial
effects in movement disorders pathognomonic of PD. It is worth noting that rotenone, a well-known
neurotoxin, has been reported to cause neuropathological changes akin to PD via induction of oxidative stress
due to disturbances in the mitochondrial electron transport system [3, 33, 34, 36]. Previous investigations have
identified raised levels of oxidative stress and pro-inflammatory cytokines in the brain of animals after
exposure to rotenone [3], and metabolic degradation of neuronal lipids and DNA [33, 38, 39]. Production of
reactive oxygen and nitrergic species is well-known to be exacerbated by multiplied mitochondrial
dysfunctions, microglia activation, neurodegeneration, and impaired antioxidant response mechanisms [3, 6,
38, 39]. Therefore, rotenone-induced depletion of endogenous antioxidant molecules (glutathione, catalase
and superoxide dismutase) may contribute to its toxicity on dopaminergic neurons [38, 39]. It is known that a
deficiency of striatal GSH has been reported in the literature and is believed to contribute to severe
neuropathological derangements in PD [40]. In this study, SbS reduces MDA and nitrite concentrations and
boosts antioxidant molecules in specific brain regions of rotenone-treated rats. Thus, these findings suggest
that SbS exhibited an antioxidant defense protective effect against rotenone-induced motor deficits in rats.

Earlier investigations had also identified raised brain concentrations of pro-inflammatory cytokines in rodents
exposed to rotenone [33, 36-38]. Indeed, several studies have shown that rotenone inhibited mitochondrial
complex-I resulting in increased microglial activation, depletion of the antioxidant defense system and release
of pro-inflammatory cytokines in various brain regions [33, 38]. Oxidative stress-mediated neuronal injury
further releases pro-inflammatory cytokines, hence supporting the notion that oxidative stress and
inflammation are co-conspirators in the demise of dopaminergic fibers [6, 38, 39]. It is interesting to state
that SbS reduced the brain concentrations of pro-inflammatory cytokines induced by rotenone in rats. This
finding is in agreement with earlier studies that showed that SbS mitigated neurological disorders in rats
subjected to ischemic stroke via suppression of oxidative stress and pro-inflammatory cytokines [22]. Thus,
the ability of SbS to reduce rotenone-induced Parkinsonian-like motor deficit in rats might also be related to
its antioxidant and anti-inflammatory activities. Besides, it is also pertinent to mention that several studies
have shown that SbS contains bioactive constituents, including apigenidin, apigenin, naringenin, and luteolin
[19], with proven antioxidant, anti-inflammatory and neuroprotective activities [2, 16, 21, 41, 42].
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Although previous studies have shown that SbS produces its most effective action between the doses of 50
mg/kg and 100 mg/kg, in this study, we intriguingly observed that SbS demonstrated a dose-dependent effect,
which suggests a unique therapeutic potential of SbS in the management of PD-like neuropathologies. As to
whether SbS exerts superiority over LC as a potential agent for motor impairment associated with rotenone,
needs further investigation. However, in the context of safety and tolerability, it is important to mention that
SbS is generally regarded as very safe for human consumption as it forms a very important part of our diets
as a vegetable. Our previous research found that SbS is most effective at doses between 50 mg/kg and 100
mg/kg [22]. This study observed a dose-dependent effect of SbS of more than 100 mg/kg, indicating its unique
stereoselective therapeutic potential against PD-like neuropathologies. However, more investigation is needed
to determine if SbS is superior to LD-CD in addressing motor impairment associated with rotenone. It's worth
noting that SbS is generally considered safe for human consumption and is a significant part of our diets as a
vegetable. Interestingly, it was recently shown that SbS ameliorated liver and kidney impairment induced by
aflatoxin-1 [43], a potent genotoxic hepatocarcinogen that causes up-regulation of alpha-synuclein,
neuroinflammation, and degeneration of dopaminergic neurons [44]. However, the role(s) of phytochemicals
in the anti-Parkinsonian-like effect of SbS requires further investigations.

Conclusion: This study suggests that SbS mitigated rotenone-induced parkinsonian-like motor dysfunctions
by reducing oxidative stress and pro-inflammatory cytokines in rats indicating its therapeutic potential in
movement-related disorders.
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