Review
Anti-aging potentials of a polyphenol-rich supplement from African Sorghum bicolor leaf sheaths: A narrative review
Paul A. Adeleke, Olajuwon Okubena, Abimbola Okubena, Abayomi M. Ajayi, Ololade Okubena, Favour B. Jegede, Clinton Ijirighjo, Lily O. Otomewo, Adaeze Adebesin, Michael O.S. Afolabi, and Solomon Umukoro
Abstract :
Aging is a complex biological process marked by a gradual decline in physiological functions and systemic deterioration, resulting in increased susceptibility to age-related diseases. There is increasing interest in the use of plant-based constituents in mitigating oxidative stress and inflammation, the major drivers of aging and age-related diseases. Polyphenol-rich plant-based constituents including Sorghum bicolor supplement (SBS) with potent antioxidant, anti-inflammatory and neuroprotective properties, have demonstrated anti-aging potential. The aim of this review is to provide documentation from published literature on the anti-aging potentials of SBS that may elicit the need for its clinical evaluation for age-related diseases. A literature search was conducted using PubMed electronic database with subject headings, related to the mechanisms of aging, age-related diseases, health burden of aging population, and polyphenols for a healthy life span. It also included the source, bioactive constituents, and antiaging potential of SBS. The findings obtained from the review showed that SBS mitigated age-related diseases in various animal models. The supplement extended the life span of Drosophila melanogaster and improved their motor functions. The SBS inhibited the activity of collagenase and elastase enzymes involved in premature skin aging and exhibited cytoprotection against hyposaline-induced red blood cells hemolysis. The anti-aging potential of SBS relates to its potent antioxidant, anti-inflammatory, immune-modulating, and neuro-protective properties. These findings provide a strong foundation for further preclinical and clinical studies to validate the therapeutic potentials of SBS in promoting a healthier lifespan and enhancing the quality of life of the aging population.
References
1. Li Y, Tian X, Luo J, Bao T, Wang S, Wu X. Molecular mechanisms of aging and anti-aging strategies. Cell Communications and Signaling. 2024; 22: 285. doi: 10.1186/s12964-024-01663-1
2. Ferrucci L, Fabbri E. Inflammageing: Chronic inflammation in ageing, cardiovascular disease, and frailty. Nature Reviews Cardiology. 2018; 15: 505-522. doi: 10.1038/s41569-018-0064-2
3. Maldonado E, Morales-Pison S, Urbina F, Solari A. Aging hallmarks and the role of oxidative stress. Antioxidants. 2023; 12: 651. doi: 10.3390/antiox12030651
4. Khan HTA, Addo KM, Findlay H. Public health challenges and responses to the growing ageing populations. Public Health Challenges. 2024; 3: e213. doi: 10.1002/puh2.213
5. Hajizadeh A, Hafezi R, Torabi F, Akbari Sari A, Tajvar M. Consequences of population ageing on health systems: A conceptual framework for policy and practice. Ethiopian Journal of Health Sciences. 2025; 35: 51-62. doi: 10.4314 /ejhs.v35i1.8
6. Frisard M, Ravussin E. Energy metabolism and oxidative stress: Impact on the metabolic syndrome and the aging process. Endocrine. 2006; 29: 27-32. doi: 10.1385/ENDO:29:1:27
7. Liu D, Si H. Dietary antiaging phytochemicals and mechanisms associated with prolonged survival. The Journal of Nutritional Biochemistry. 2014; 25: 581-591. doi: 10.1016/j.jnutbio.2014.02.001
8. Zhao J, Han Z, Ding L, Wang P, He X, Lin L. The molecular mechanism of aging and the role in neurodegenerative diseases. Heliyon. 2024; 10: e24751. doi: 10.1016/j.heliyon.2024.e24751
9. Saboor M, Kamrani A, Momtaz YA, Sahaf R. Prevalence and associated factors of potentially inappropriate medications among Iranian older adults. Medicinski Glasnik. 2019; 16: 121-127. doi: 10.17392/989-19
10. Ogugua OJ, Muonde O, Maduka M, Olorunsogo TO, Omotayo O. Demographic shifts and healthcare: A review of aging populations and systemic challenges. International Journal of Sciences and Research Archive. 2024; 11: 383-395. doi: 10.30574/ijsra.2024.11.1.0067
11. Zhang K, Kan C, Luo Y, Song H, Tian Z, Ding W, et al. The promotion of active aging through older adult education in the context of population aging. Frontiers in Public Health. 2022; 10: 998710. doi: 10.3389/ fpubh.2022.998710
12. Si HW, Liu DM. Dietary antiaging phytochemicals and mechanisms associated with prolonged survival. Journal of Nutritional Biochemistry. 2014; 25: 581-591. doi: 10.1016/j.jnutbio.2014.02.001
13. Michalak M. Plant-derived antioxidants: Significance in skin health and the ageing process. International Journal of Molecular Sciences. 2022; 23: 585. doi: 10.3390/ijms23020585
14. Adebesin A, Omogbiya AI, Oluwole OG, Okubena O, Asomadu RO, Afolabi MOS, et al. An evidence-based systematic review of pleiotropic potential health benefits of Sorghum bicolor supplement: A polyphenol-rich derivative of the leaf sheaths of sorghum plant. Journal of Natural Remedies. 2024; 24: 2320-3258. doi: 10.18311/jnr/ 2024/33171
15. John R, Abolaji AO, Adedara AO, Ajayi AM, Aderibigbe AO, Umukoro S. Jobelyn® extends the life span and improves motor function in Drosophila melanogaster exposed to lipopolysaccharide via augmentation of antioxidant status. Metabolic Brain Disease. 2022; 37: 1031-1040. doi: 10.1007/s11011-022-00919-4
16. Benson KF, Beaman JL, Ou B, Okubena A, Okubena O, Jensen GS. West African Sorghum bicolor leaf sheaths have anti-inflammatory and immune-modulating properties in vitro. Journal of Medicinal Food. 2023; 16: 230-238. doi: 10.1089/jmf.2012.0214
17. De Meijer C, Wouterse B, Polder J, Koopmanschap M. The effect of population aging on health expenditure growth: A critical review. European of Journal of Ageing. 2013; 10: 353-361. doi: 10.1007/s10433-013-0280-x
18. Tabata K. Population aging, the costs of health care for the elderly and growth. Macroecon. 2005; 27: 472-493. doi: 10.1016/j.jmacro.2004.02.008
19. Tang B, Li Z, Hu S, Xiong J. Economic implications of health care burden for elderly population. Inquiry. 2022; 59: 469580221121511. doi: 10.1177/00469580221121511
20. Shoaei F, Nejati V. Elderly-caring service pattern in USA comparing with Iran. SALMAND: Iranian Journal of Ageing. 2008; 3: 68-67. doi: Nil.
21. Akinrolie O, Iwuagwu AO, Kalu ME, Rayner D, Oyinlola O, Ezulike CD, Onyekere CP. Longitudinal studies of aging in Sub-Saharan Africa: Review, limitations, and recommendations in preparation of projected aging population. Innovation in Aging. 2024; 8(4): igae002. doi: 10.1093/geroni/igae002
22. García-Velázquez L, Arias C. An update on the molecular pillars of aging. In: Gomez-Verjan J, Rivero-Segura N. Eds., Clinical genetics and genomics of aging. Springer. 2020; doi: 10.1007/978-3-030-40955-5_1
23. Devi A, Dwibedi V, Rath SK, Khan Z. Theories and mechanism of aging and longevity through evolutionary lens: A coalition of plant anti-oxidants. Revista Brasileria Farmacognosia. 2022; 32: 291-320. doi: 10.1007/s43450-022-00254-w
24. de Magalhães JP. Distinguishing between driver and passenger mechanisms of aging. Nature Genetics. 2024; 56: 204-211. doi: 10.1038/s41588-023-01627-0
25. Zhao Y, Simon M, Seluanov A, Gorbunova V. DNA damage and repair in age-related inflammation. Nature Reviews Immunology. 2023; 23: 75-89. doi: 10.1038/s41577-022-00751-y
26. Gorbunova V, Seluanov A, Mita P, McKerrow W, Fenyö D, Boeke JD, et al. The role of retrotransposable elements in ageing and age-associated diseases. Nature. 2021; 596: 43-53. doi: 10.1038/s41586-021-03542-y
27. Zhao MJ, Yuan S, Zi H, Gu JM, Fang C, Zeng XT. Oxidative stress links aging‐associated cardiovascular diseases and prostatic diseases. Oxidative Medicine and Cellular Longevity. 2021; 5896136. doi: 10.1155/2021/5896136
28. Mager DR. Theories of Aging. In: Gerontological nursing: competencies for care, ed., Mauk KL. Jones and Bartlett Learning. 2022; 47-72. ISBN: 1284233367.
29. Jarrett SG, Boulton ME. Consequences of oxidative stress in age-related macular degeneration. Molecular Aspects of Medicine. 2012; 33: 399-417. doi: 10.1016/j.mam.2012.03.009
30. Del Rio D, Rodriguez-Mateos A, Spencer JP, Tognolini M, Borges G, Crozier A. Dietary (poly) phenolics in human health: Structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxidants and Redox Signaling. 2013; 18: 1818-1892. doi: 10.1089/ars.2012.4581
31. Wang K, Zhang T, Dong Q, Nice EC, Huang C, Wei Y. Redox homeostasis: The linchpin in stem cell self-renewal and differentiation. Cell Death Disease. 2013; 4: e537. doi: 10.1038/cddis.2013.50
32. Gasek NS, Kuchel GA, Kirkland JL, Xu M. Strategies for targeting senescent cells in human disease. Nature Aging. 2021; 1: 870-879. doi: 10.1038/s43587-021-00121-8
33. Jansen-Dürr P, Osiewacz HD. Healthy ageing: A question of stress, damage and repair. EMBO Reports. 2022; 3(12): 1127-1132. doi: 10.1093/embo-reports/kvf247
34. Goto S. An unsolved problem in gerontology yet: Molecular mechanisms of biological aging-A historical and critical review. In: Aging Mechanisms II, Longevity, Metabolism, and Brain Aging. 2022; 1-30. doi: 10.1007/978-981-16-7977-3_1
35. Cevenini E, Invidia L, Lescai F, Salvioli S, Tieri P, Castellani G, Franceschi C. Human models of aging and longevity. Expert Opinion on Biological Therapy. 2022; 8: 1393-1405. doi: 10.1517/14712598.8.9.1393
36. Auley MT, Guimera AM, Hodgson D, Mcdonald N, Mooney KM, Morgan AE, Proctor CJ. Modelling the molecular mechanisms of aging. Bioscience Reports. 2017; 37(1): BSR20160177. doi: 10.1042/BSR20160177
37. Li Z, Zhang Z, Ren Y, Wang Y, Fang J, Yue H, Guan F. Aging and age‐related diseases: From mechanisms to therapeutic strategies. Biogerontology. 2021; 22: 165-187. doi: 10.1007/s10522-021-09910-5
38. Liu J, Wang J, Zhu B, Liang K, Zhang Y, Song J, et al. Identification of phenols and their formation network during the brewing process of Shanxi aged vinegar. Food Chemistry. 2025; 470: 142635. doi: 10.1016/j.foodchem.2024. 142635
39. Shah MA, Faheem HI, Hamid A, Yousaf R, Haris M, Saleem U, Silva AS. The entrancing role of dietary polyphenols against the most frequent aging‐associated diseases. Medicinal Research Review. 2024; 44: 235-274. doi: 10.1002/ med.21985
40. Luo J, Si HW, Jia ZQ, Liu DM. Dietary anti-aging polyphenols and potential mechanisms. Antioxidants. 2021; 10(2): 283. doi: 10.3390/antiox10020283
41. Yahfoufi N, Alsadi N, Jambi M, Matar C. The immunomodulatory and anti-inflammatory role of polyphenols. Nutrients. 2018; 10(11): 1618. doi: 10.3390/nu10111618
42. Grabska-Kobyłecka I, Szpakowski P, Król A, Książek-Winiarek D, Kobyłecki A, Głąbiński A, Nowak D. Polyphenols and their impact on the prevention of neurodegenerative diseases and development. Nutrients. 2023; 15: 3454. doi: 10.3390/nu15153454
43. Shannon OM, Ashor AW, Scialo F, Saretzki G, Martin-Ruiz C, Lara J, et al. Mediterranean diet and the hallmarks of ageing. European Journal of Clinical Nutrition. 2021; 75: 1176-1192. doi: 10.1038/s41430-020-00841-x
44. Vasto S, Barera A, Rizzo C, Di Carlo M, Caruso C, Panotopoulos G. Mediterranean diet and longevity: An example of nutraceuticals? Current Vascular Pharmacology. 2014; 12: 735-738. doi: 10.2174/1570161111666131219111818
45. Meccariello R, D’Angelo S. Impact of polyphenolic-food on longevity: An elixir of life, an overview. Antioxidants. 2021; 10: 507. doi: 10.3390/antiox10040507
46. Castro-Jácome TP, Alcántara-Quintana LE, Montalvo-González E, Chacón-López A, Kalixto-Sánchez MA, Rivera MDP, et al. Skin-protective properties of peptide extracts produced from white sorghum grain kafirins. Industrial Crops and Products. 2021; 167: 113551. doi: 10.1016/j.indcrop.2021.113551
47. Khalid W, Ali A, Arshad MS, Afzal F, Akram R, Siddeeg A, Saeed A. Nutrients and bioactive compounds of Sorghum bicolor L. used to prepare functional foods: A review on the efficacy against different chronic disorders. International Journal Food Properties. 2022; 25: 1045-1062. doi: 10.1080/10942912.2022.2071293
48. Espitia-Hernández P, Chávez González ML, Ascacio-Valdés JA, Dávila-Medina D, Flores-Naveda A, Silva T, et al. Sorghum (Sorghum bicolor L.) as a potential source of bioactive substances and their biological properties. Critical Reviews in Food Science and Nutrition. 2022; 62: 2269-2280. doi: 10.1080/10408398.2020.1852389
49. Anrather J, Iadecola JC. Inflammation and stroke: An overview. Neurotherapeutics. 2016; 13: 661-670. doi: 10.1007/ s13311-016-0483-x
50. Doyle KP, Simon RP, Stenzel-Poore MP. Mechanisms of ischemic brain damage. Neuropharmacology. 2008; 55: 310. doi: 0.1016/j.neuropharm.2008.01.005
51. Beraki S, Litrus L, Soriano L, Monbureau M, To LK, Braithwaite SP, et al. A pharmacological screening approach for discovery of neuroprotective compounds in ischemic stroke. PLoS One. 2013; 8(7): e69233. doi: 10.1371/journal. pone.0069233
52. Umukoro S, Oghwere EE, Ben-Azu B, Owoeye O, Ajayi AM, Omorogbe O, Okubena O. Jobelyn® ameliorates neurological deficits in rats with ischemic stroke through inhibition of release of pro-inflammatory cytokines and NF-ĸB signaling pathway. Pathophysiology. 2019; 26: 77-88. doi; 10.1016/j.pathophys.2018.10.002
53. Umukoro S, Ugbomah A, Aderibigbe A, Omogbiya A. Antioxidant property of JobelynR as the possible mechanism underlying its anti-amnesic effect in rodents. Basic and Clinical Neurosciences. 2013; 4(1): 42-49. PMID: 25337327.
54. Adeleke PA, Annafi OS, Ajayi AM, Ben-Azu B, Okubena O, Umukoro S. Sorghum bicolor-based supplement reduces oxidative stress and pro-inflammatory cytokines to mitigate rotenone-induced Parkinsonian-like motor dysfunctions in rats. Mediterranean Journal of Pharmacy and Pharmaceutical Sciences. 2024; 4(3): 15-26. doi: 10.5281/zenodo.13309953
55. Guo Q, Wang Y, Xu D, Nossent J, Pavlos NJ, Xu J. Rheumatoid arthritis: pathological mechanisms and modern pharmacologic therapies. Bone Research. 2018; 6(1): 15-17. doi: 10.1038/s41413-018-0016-9
56. Deshmukh R. Rheumatoid arthritis: Pathophysiology, current therapeutic strategies and recent advances in targeted drug delivery system. Materials Today Communications. 2023; 35: 2352-4928. doi: 10.1016/j.mtcomm.2023.10587
57. Abbas AG, Ajiboye OB, Adeleke PA, Ajayi AM, Okubena O, Umukoro S. Polyphenol-rich Sorghum bicolor supplement exhibits anti-nociceptive activity and protective effects against pathological changes associated with complete Freund's adjuvant induced arthritis in rodents. Pharmacological Research-Modern Chinese Medicine. 2024; 12: 100481. doi: 10.1016/j.prmcm.2024.100481
58. Makarov SS. NF-κB in rheumatoid arthritis: A pivotal regulator of inflammation, hyperplasia, and tissue destruction. Arthritis Research and Therapy. 2001; 3: 1-7. doi: 10.1186/ar300
59. Kaur G, Sharma A, Bhatnagar A. Role of oxidative stress in pathophysiology of rheumatoid arthritis: insights into NRF2-KEAP1 signaling. Autoimmunity. 2021; 54: 385-397. doi: 10.1080/08916934.2021.1963959
60. Makanjuola SBL, Ogundaini AO, Ajonuma LC, Dosunmu A. Apigenin and apigeninidin isolates from the Sorghum bicolor leaf targets inflammation via cyclooxygenase-2 and prostaglandin‐E2 blockade. International Journal of Rheumatic Disease. 2018; 21: 1487-1495. doi: 10.1111/1756-185X.13355
61. Kim J, Fann DY, Seet RC, Jo DG, Mattson MP, Arumugam TV. Phytochemicals in ischemic stroke. Neuromolecular Medicine. 2016; 18: 283-305. doi: 10.1007/s12017-016-8403-0
62. Xu H, Wang E, Chen J, Xiao J, Wan M. Neuroprotective phytochemicals in experimental ischemic stroke: Mechanisms and potential clinical applications. Oxidative Medicine and Cellular Longevity. 2021; 6687386. doi: 10.1155/2021/6687386
63. Shay GM. Are essential trace elements effective in modulation of mental disorders? Update and perspectives. Biological Trace Element Research. 2022; 200: 1032-1059. doi: 10.1007/s12011-021-02733-y
64. Djuricic L, Calder PC. Beneficial outcomes of omega-6 and omega-3 polyunsaturated fatty acids on human health: An update for 2021. Nutrients. 2021; 13(7): 2421. doi: 10.3390/nu13072421
65. Tantipaiboonwong P, Chaiwangyen W, Suttajit M, Kangwan N, Kaowinn S, Khanaree C, et al. Molecular mechanism of antioxidant and anti-inflammatory effects of omega-3 fatty acids in perilla seed oil and rosmarinic acid rich fraction extracted from perilla seed meal on TNF-α induced A549 lung adenocarcinoma cells. Molecules. 2021; 26: 6757. doi: 10.3390/molecules26226757
66. Pitot HC. The molecular biology of carcinogenesis. Cancer. 1993; 72: 962-970. doi: 10.1002/1097-0142 19930801
67. Oliveira PA, Colaco A, Chaves R, Guedes-Pinto H, Luis F, De-La-Cru P, Lopes C. Chemical carcinogenesis. Anais de Academia Brasileira de Ciencias. 2007; 79: 593-616. doi: 10.1590/S0001-37652007000400004
68. Van Rensburg SJ. Epidemiologic and dietary evidence for a specific nutritional predisposition to esophageal cancer. Journal of National Cancer Institute. 1981; 67(2): 243-251. PMID: 6943364.
69. Chen X, Shen J, Xu J, Herald T, Smolensky D, Perumal R, Wang W. Sorghum phenolic compounds are associated with cell growth inhibition through cell cycle arrest and apoptosis in human hepatocarcinoma and colorectal adenocarcinoma cells. Foods. 2021; 10(5): 993. doi: 10.3390/foods10050993
70. Merlin JPJ, Rupasinghe HPV, Dellaire G, Murphy K. Role of dietary antioxidants in p53-mediated cancer chemo-prevention and tumor suppression. Oxidative Medicine and Cellular Longevity. 2021; 18: 9924328. doi: 10.1155/ 2021/9924328
71. Massey AR, Reddivari L, Vanamala J. The dermal layer of sweet sorghum (Sorghum bicolor) stalk, a byproduct of biofuel production and source of unique 3 deoxyanthocyanidins, has more antiproliferative and proapoptotic activity than the pith in p53 variants of HCT116 and colon cancer stem cells. Journal of Agricultural and Food Chemistry. 2014; 62(4): 3150-3159. doi: 10.1021/jf405415u
72. Makanjuola SBL, Dosunmu D, Ajonuma L, Ogundaini A, Okubena O. Newly isolated compounds from West African Sorghum bicolor leaf sheaths Jobelyn® show potential in cancer immunosurveillance. Journal of Cancer Research and Therapy. 2016; 4: 31-37. doi: 10.14312/2052-4994.2016-6
73. Okubena O, Makanjuola S, Ajonuma LC, Dosunmu A, Umukoro S, Erah PO. The West African Sorghum bicolor leaf sheath extract Jobelyn® and its diverse therapeutic potentials. MOJ Drug Design Development and Therapy. 2018; 2: 1-10. doi: 10.15406/mojddt.2018.02.00025
74. Memariani Z, Abbas SQ, Hassan SS, Ahmadi A, Chabra A. Naringin and naringenin as anticancer agents and adjuvants in cancer combination therapy: Efficacy and molecular mechanisms of action, a comprehensive narrative review. Pharmacological Research. 2021; 171: 105264. doi: 10.1016/j.phrs.2020.105264
75. Salehi B, Azzini E, Zucca P, Varoni ME, Kumar NVA, Dini L, et al. Plant-derived bioactives and oxidative stress-related disorders: A Key trend towards healthy aging and longevity promotion. Applied Science. 2020; 10: 947. doi: 10.3390/app10030947
76. Nouri Z, Fakhri S, El-Senduny FF, Sanadgol N, Abd-ElGhani GE, Farzaei MH, Chen J-T. On the neuroprotective effects of naringenin: Pharmacological targets, signaling pathways, molecular mechanisms, and clinical perspective. Biomolecules. 2019; 9: 690. doi: 10.3390/biom9110690
77. Balez R, Steiner N, Engel M, Muñoz SS, Lum JS, Wu Y, et al. Neuroprotective effects of apigenin against inflammation, neuronal excitability and apoptosis in an induced pluripotent stem cell model of Alzheimer’s disease. Scientific Reports. 2016; 6: 31450. doi: 10.1038/srep31450
78. Kou JJ, Shi JZ, He YY, Hao JJ, Zhang HY, Luo DM, et al. Luteolin alleviates cognitive impairment in Alzheimer’s disease mouse model via inhibiting endoplasmic reticulum stress-dependent neuroinflammation. Acta Pharmacologica Sinica. 2022; 43: 840-849. doi: 10.1038/s41401-021-00702-8
79. Zhang N, Hu Z, Zhang Z, Liu G, Wang Y, Ren Y, et al. Protective role of naringenin against Aβ25-35-caused damage via ER and PI3K/Akt-mediated pathways. Cellular and Molecular Neurobiology. 2018; 38: 549-557. doi: 10.1007/ s10571-017-0519-8
80. Kajal G, Yasir S. Effect of apigenin on neurodegenerative diseases. CNS and Neurological Disorders Drug Targets. 2024; 23(4): 468-475. doi: 10.2174/1871527322666230406082625
81. Dimaki A, Kyriazi M, Leonis G, Sfiniadakis I, Papaioannou GT, Ioannou E, et al. Diabetic skin and UV light: Protection by antioxidants. European Journal of Pharmaceutical Sciences. 2019; 127: 1-8. doi: 10.1016/j.ejps.2018. 10.010
82. Kim J, Kim D, Kim H, Jang A. Protection effect of donkey hide gelatin hydrolysates on UVB-induced photoaging of human skin fibroblasts. Process Biochemistry. 2018; 67: 118-126. doi: 10.1016/j.procbio.2018.02.004
83. Mukherjee PK, Maity N, Nema NK, Sarkar BK. Bioactive compounds from natural resources against skin aging. Phytomedicine. 2011; 19: 64-73. doi: 10.1016/j.phymed.2011.10.003
84. Singh H, Mohanto S, Bhunia A, Singh BK, Chauhan K, Kumar A, et al. Antioxidants in aging, In: Antioxidants. John Wiley & Sons, Ltd. 2025; 257-283. doi: 10.1002/9781394270576.ch8
85. Nichols JA, Katiyar SK. Skin photoprotection by natural polyphenols: Anti-inflammatory, anti-oxidant and DNA repair mechanisms. Archives of Dermatological Research. 2010; 302: 71. doi: 10.1007/S00403-009-1001-3
86. Iida M, Kagawa T, Yajima I, Harusato A, Tazaki A, Nishadhi DASM, Taguchi N, Kato M. Anti-graying effects of external and internal treatments with luteolin on hair in model mice. Antioxidants. 2024; 13: 1549. doi: 10.3390/ antiox13121549
87. Rosenberg AM, Rausser S, Ren J, Mosharov EV, Sturm G, Ogden RT, et al. Quantitative mapping of human hair greying and reversal in relation to life stress. ELife. 2021; 10: e67437. doi: 10.7554/eLife.67437
88. Ungvari A, Kiss T, Gulej R, Tarantini S, Csik B, Yabluchanskiy A, et al. Irradiation-induced hair graying in mice: an experimental model to evaluate the effectiveness of interventions targeting oxidative stress, DNA damage prevention, and cellular senescence. GeroScience. 2024; 46(3): 3105-3122. doi: 10.1007/s11357-023-01042-7
89. Triwongwaranat D, Thuangtong R, Arunkajohnsak S. A review of the etiologies, clinical characteristics, and treatment of canities. International Journal of Dermatology. 2019; 58: 659-666. doi: 10.1111/ijd.14399
90. Yi Y, Xu W, Fan Y, Wang HX. Drosophila as an emerging model organism for studies of food-derived antioxidants. Food Research International. 2021; 143: 110307. doi: 10.1016/j.foodres.2021.110307
91. Dan A, Chen Y, Tian Y, Wang S. In vivo anti-aging properties on fat diet-induced high fat Drosophila melanogaster of n-butanol extract from Paecilomyces hepialid. Food Science and Human Wellness. 2022; 12: 1204-1211. doi: 10.1016/j.fshw.2022.10.015
92. He Y, Jasper H. Studying aging in Drosophila. Methods. 2014; 68: 129-133. doi: 10.1016/j.ymeth.2014.04.008
93. Rodal AA, Signore SJD, Martin AC. Drosophila comes of age as a model system for understanding the function of cytoskeletal proteins in cells, tissues, and organisms. Cytoskeleton. 2015; 72: 207-224. doi: 10.1002/cm.21228
94. Zhao J, Bi W, Xiao S, Lan X, Cheng X, Zhang J, Zhu L. Neuroinflammation induced by lipopolysaccharide causes cognitive impairment in mice. Scientific Reports. 2019; 9: 5790. doi: 10.1038/s41598-019-42286-8
95. Emokpae O, Ben-Azu B, Ajayi AM, Umukoro S. D-ribose-Lcysteine attenuates lipopolysaccharide-induced memory deficits through the inhibition of oxidative stress, release of proinflammatory cytokines, and nuclear factor-kappa B. Naunyn-Schmiedeberg's Archives Pharmacology. 2020; 393: 909-925. doi: 10.1007/s00210-019-01805-0
96. Liu H, Han M, Li Q, Zhang X, Wang WA, Huang FD. Automated rapid iterative negative geotaxis assay and its use in a genetic screen for modifiers of Aβ42-induced locomotor decline in Drosophila. Neuroscience Bulletin. 2015; 31: 541-549. doi: 10.1007/s12264-014-1526-0
97. Kumar A, Christian PK, Panchal K, Guruprasad BR, Tiwari AK. Supplementation of Spirulina (Arthrospira platensis) improves lifespan and locomotor activity in paraquat-sensitive DJ-1βΔ93 flies, a Parkinson's disease model in Drosophila melanogaster. Journal Dietary Supplements. 2017; 14: 573-588. doi: 10.1080/19390 211.2016. 1275917
98. Rani PJ, Panneerselvam C. Protective efficacy of l-carnitine on acetylcholinesterase activity in aged rat brain. The Journal of Gerontology: Series A Biological Sciences and Medical Sciences. 2001; 56: B140-141. doi: 10.1093/ gerona/56.3.b140
99. Loizzo MR, Tundis R, Menichini F, Menichini F. Natural products and their derivatives as cholinesterase inhibitors in the treatment of neurodegenerative disorders: An update. Current Medicinal Chemistry. 2008; 5: 1209-1228. doi: 10.2174/09298 6708784310 422
100. Li H, Liang B, Cao Y, Xu Y, Chen J, Yao Y, Shen J, Yao D. Research progress on anti-aging effects of Chinese medicinal on Drosophila. Acta Chinese Medical Pharmacology. 2020; 48: 76-79. doi: 10.19664/j.cnki.1002-2392. 200202
101. Orr WC, Sohal R. Extension of life-span by overexpression of superoxide dismutase and catalase in Drosophila melanogaster. Science. 1994; 263: 1128-1130. doi: 10.1126/science.8108730
102. Arking R, Burde V, Graves K, Hari R, Feldman E, Zeevi A, Soliman S, Saraiya A, Buck S, Vettraino J, Sathrasala K, Wehr N, Levine RL. Forward and reverse selection for longevity in Drosophila is characterized by alteration of antioxidant gene expression and oxidative damage patterns. Experimental Gerontology. 2000; 35: 167-185. doi: 10.1016/s0531-5565(99)00094-7
103. McNaught KS, Jenner P. Extracellular accumulation of nitric oxide, hydrogen peroxide and glutamate in astrocytic cultures following glutathione depletion, complex 1 inhibition, and/ or lipopolysaccharide-induced activation. Biochemical Pharmacology. 2000; 60: 979-988. doi: 10.1016/S0006-2952(00) 00415-9
104. Gough D, Cotter T. Hydrogen peroxide: A Jekyll and hyde signaling molecule. Cell Death Diseases. 2011; 2: e213. doi: 10.1038/cddis.2011. 96
105. Đorđević VV, Lazarević D, Ćosić V, Knežević M, Đorđević VB. Age-related changes of superoxide dismutase activity in patients with schizophrenia. Vojnosanitetski Pregled. 2017; 74: 31-37. doi: 10.2298/VSP141202142D
106. Yadav S, Deepika, Maurya PK. A systematic review of red blood cells biomarkers in human aging. Journal of Gerontology: Series A Biological Sciences and Medical Sciences. 2024; 79: glae004. doi: 10.1093/gerona/glae004
107. Remigante A, Spinelli S, Trichilo V, et al. D-Galactose induced early aging in human erythrocytes: Role of band 3 protein. Journal of Cell Physiology. 2022; 237: 1586-1596. doi: 10.1002/jcp.30632
108. Das UN. Cell membrane theory of senescence and the role of bioactive lipids in aging and aging associated diseases and their therapeutic implications. Biomolecules. 2021; 11: 1873. doi: 10.3390/biom11121873
109. Chaitanya R, Sandhya S, David B, Vinod KR, Murali S. HRBC membrane stabilizing property of root, stem and leaf of Glochidion velutinum. International Journal of Research Pharmaceutical and BioMedical Sciences. 2011; 2: 256-259. Corpus ID: 86334165.
110. Antonelou MH, Kriebardis AG, Papassideri IS. Aging and death signalling in mature red cells: From basic science to transfusion practice. Blood Transfusion. 2018; 8(Suppl 3): s39-47. doi: 10.2450/2010.007S
111. Umukoro S, Oluwole OG, Eduviere AT, Omogbiya IA, Ajayi. Jobelyn® exhibited anti-inflammatory, antioxidant, and membrane-stabilizing activities in experimental models. Journal of Basic and Clinicat Physiology and Pharmacology. 2015; 26: 501-508. doi: 10.1515/jbcpp-2014-0113
112. Bragt PC, Bonta IL. Oxidant stress during inflammation: Anti-inflammatory effects of anti-oxidants. Agents Actions. 1980; 10(6): 536-539. doi: 10.1007/BF02024159
113. Gadamsetty G, Maru S, Sarada NC. Antioxidant and anti-inflammatory activities of the methanolic leaf extract of traditionally used medicinal plant Mimusops elengi leaves. Journal of Pharmaceutical Sciences Research. 2013; 5: 125-130. doi: 10.1016/ S2221-1691(12)60346-3
114. Kumar A, Maurya PK. Curcumin ameliorates oxidative stress in red blood cells during ageing. Indian Journal of Natural Product Recourses. 2023; 14: 50-54. doi: 10.56042/ijnpr.v14i1.1127
Citation :
Adeleke et al. Anti-aging potentials of a polyphenol-rich supplement from African Sorghum bicolor leaf sheaths: A narrative review. Mediterr J Pharm Pharm Sci. 2025; 5(4): 58-77. [Article number: 231]. https://doi.org/10.5281/zenodo.17742769