Original Research
Evaluating the effects of insulin, metformin and glibenclamide on the pups’ prefrontal cortex and oxidative stress markers of streptozotocin-induced diabetic pregnant rats
Seun A. Sangoyomi, Sodiq K. Lawal, Adeoluwa Akeem Adeniji, Abraham A. Osinubi, Samuel O. Olojede, Okikioluwa S. Aladeyelu, Matome N. Matshipi and Sylvia K. Dithole
Abstract :
There is an upsurge in gestational diabetes mellitus with many devastating consequences for the mother and developing fetus. Insulin therapy remains a mainstay. However, insulin is expensive and comes with the pain of multiple injections. Therefore, there is a need to explore commonly administered oral hypoglycemic agents to cater for the increasing gestational diabetes mellitus-associated neurological complications. This study assesses the effects of glibenclamide, metformin and insulin on the pups’ prefrontal cortex in diabetic pregnant rats. 35 sexually matured adult female rats weighing between 120 g and 160 g were used and assigned into five groups (A to E) of seven rats each group. Diabetes was induced by streptozotocin (45 mg/kg and 35 mg/kg; ip). Hyperglycemic rats were treated with insulin (1.0 UI daily), metformin (200 mg/kg/day) and glibenclamide (0.6 mg/kg/day). Body weight and blood glucose levels were evaluated. Rats were sacrificed at 18-day gestation, the pups were harvested, and their brains were processed for tissue oxidative stress markers and various histological examinations. Glibenclamide and metformin caused a significant blood glucose reduction at 37.9% and 40.7%, respectively, compared to the insulin group (33.09%). There was no significant difference in the body-organ ratio in rats treated with metformin when compared to rats treated with insulin. Metformin and glibenclamide had a significant increase in tissue glutathione reductase and a decrease in malondialdehyde compared with insulin and diabetic control groups. The pups’ prefrontal cortex showed degenerated neuronal cells in the diabetic control animals. The diabetic rats treated with metformin and glibenclamide showed improved pyramidal neurons compared with diabetic and insulin groups. This study suggests that metformin and glibenclamide glycemic control may prevent and improve antioxidant enzymes and reverse some neurotoxic effects caused by streptozotocin-induced diabetes in rats.
References
1. Glaser N, Sasaki-russell J, Cohen M, Little C, O’Donnell M, Sall J (2017) Histological and cognitive alterations in adult diabetic rats following an episode of juvenile diabetic ketoacidosis: evidence of permanent cerebral injury. Neuroscience Letters. 650: 161-167. doi: 10.1016/j.neulet.2017.04.035
2. Prabhakar K, Loganathan D (2017) ESICON abstracts. Indian Journal of Endocrinology and Metabolism. 21: S4-S79. doi: Nil.
3. Punthakee Z, Goldenberg R, Katz P (2018) Definition, classification and diagnosis of diabetes, prediabetes and metabolic syndrome. Canadian Journal of Diabetes. 42: S10-S15. doi: 10.1016/j.jcjd.2017.10.003
4. Rani PR, Begum J (2016) Screening and diagnosis of gestational diabetes mellitus, where do we stand. Journal of Clinical and Diagnostic Research. 10 (4): QE01-QE04. doi: 10.7860/JCDR/2016/17588.7689
5. Hod M, Kapur A, Sacks DA, Hadar E, Agarwal M, DI Renzo GC, Roura LC, Mcintyre HD, Morris JL, Divakar H (2015) The International Federation of Gynecology and Obstetrics (FIGO) Initiative on gestational diabetes mellitus: A pragmatic guide for diagnosis, management, and care. International Journal of Gynecology and Obstetrics. 131: Suppl 3: 173-211. doi: 10.1016/S0020-7292(15)30033-3
6. Muche AA, OlayemI OO, Gete YK (2019) Prevalence of gestational diabetes mellitus and associated factors among women attending antenatal care at Gondar town public health facilities, Northwest Ethiopia. BMC Pregnancy and Childbirth. 19: 334. 1-13. doi: 10.1186/s12884-019-2492-3
7. John CM, Mohamed Yusof NIS, Abdul Aziz SH, Mohd Fauzi F (2018) Maternal cognitive impairment associated with gestational diabetes mellitus-A review of potential contributing mechanisms. International Journal of Molecular Sciences. 19 (12): 3894. doi: 10.3390/ijms19123894
8. Xuan DS, Zhao X, Liu YC, Xing QN, Shang HL, Zhu PY, Zhang XA (2020) Brain development in infants of mothers with gestational diabetes mellitus: a diffusion tensor imaging study. Journal of Computer Assisted Tomography. 44 (6): 947-952. doi: 10.1097/RCT.0000000000001110
9. Huerta-Cervantes M, Peña-montes DJ, López-Vázque MÁ, Montoya-Pérez R, Cortés-Rojo C, Olvera-Cortés ME, Saavedra-Molina A (2021) Effects of gestational diabetes in cognitive behavior, oxidative stress and metabolism on the second-generation off-spring of rats. Nutrients. 13 (5): 1575. doi: 10.3390/nu13051575
10. Magon N, Seshiah V (2011) Gestational diabetes mellitus: Non-insulin management. Indian Journal of Endocrinology and Metabolism. 15 (4): 284-293. doi: 10.4103/2230-8210.85580
11. Jovanovic L, Pettitt DJ (2001) Gestational diabetes mellitus. JAMA. 286 (20): 2516-2518. doi: 10.1001/jama.286. 20.2516
12. Nicholson W, Bolen S, Witkop CT, Neale D, Wilson L, Bass E (2009) Benefits and risks of oral diabetes agents compared with insulin in women with gestational diabetes: a systematic review. Obstetrics and Gynecology. 113 (1): 193-205. doi: 10.1097/AOG.0b013e318190a459
13. Sutherland H, Bewsher P, Cormack J, Hughes C, Reid A, RusselL G, Stowers J (1974) Effect of moderate dosage of chlorpropamide in pregnancy on fetal outcome. Archives of Disease in Childhood. 49 (4): 283-291. doi: 10.1136/ adc.49.4.283.
14. Langer O, Conway DL, Berkus MD, Xenakis EM-J, Gonzales O (2000) A comparison of glyburide and insulin in women with gestational diabetes mellitus. The New England Journal of Medicine. 343 (16): 1134-1138. doi: 10.1056/NEJM200010193431601
15. Rowan JA, Hague WM, Gao W, Battin MR, Moore MP (2008) Metformin versus insulin for the treatment of gestational diabetes. The New England Journal of Medicine. 358 (19): 2003-2015. doi: 10.1056/NEJMoa0707193
16. Langer O (2006) The diabetes in pregnancy dilemma: leading changes with simple solutions. New York: University Press of America. ISBN: 978-0761832706.
17. Kavitha N, De S, Kanagasabai S (2013) Oral hypoglycemic agents in pregnancy: an update. The Journal of Obstetrics and Gynecology of India. 63 (2): 82-87. doi: 10.1007/s13224-012-0312-z
18. Holt R, Lambert K (2014) The use of oral hypoglycaemic agents in pregnancy. Diabetic Medicine. 31 (3): 282-291. doi: 10.1111/dme.12376
19. Mack LR, Tomich PG (2017) Gestational diabetes: diagnosis, classification, and clinical care. Obstetrics and Gynecology Clinics of North America. 44 (2): 207-217. doi: 10.1016/j.ogc.2017.02.002
20. Gangji AS, Cukierman T, Gerstein HC, Goldsmith CH, Clase CM (2007) A systematic review and meta-analysis of hypoglycemia and cardiovascular events: a comparison of glyburide with other secretagogues and with insulin. Diabetes Care. 30 (2): 389-394. doi: 10.2337/dc06-1789
21. Douros A, Yin H, Y, Ohy, Filion KB, Azoulay L Suissa S (2017) Pharmacologic differences of sulfonylureas and the risk of adverse cardiovascular and hypoglycemic events. Diabetes Care. 40 (11): 1506-1513. doi: 10.2337/dc17-0595
22. Inzucchi SE (2002) Oral antihyperglycemic therapy for type 2 diabetes: scientific review. JAMA. 287 (3): 360-372. doi: 10.1001/jama.287.3.360
23. Rendell M (2004) The role of sulphonylureas in the management of type 2 diabetes mellitus. Drugs. 64 (12): 1339-1358. doi: 10.2165/00003495-200464120-00006
24. Bolen S, Feldman L, Vassy J, Wilson L, Yeh H-C, Marinopoulos S, Wiley C, Selvin E, Wilson R, Bass EB (2007) Systematic review: comparative effectiveness and safety of oral medications for type 2 diabetes mellitus. Annals of Internal Medicine. 147 (6): 386-399. doi: 10.7326/0003-4819-147-6-200709180-00178
25. Nye HJ, Herrington WG (2011) Metformin: the safest hypoglycaemic agent in chronic kidney disease? Nephron, Clinical Practice. 118 (4): c380-c383. doi: 10.1159/000323739
26. Priya G, Kalra S (2018) Metformin in the management of diabetes during pregnancy and lactation. Drugs in Context. 7: 212523. doi: 10.7573/dic.212523
27. Lawal SK, Adeniji AA, Sulaiman SO, Akajewole MM, Buhari MO, Osinubi AA (2019) Comparative effects of glibenclamide, metformin and insulin on fetal pancreatic histology and maternal blood glucose in pregnant streptozotocin-induced diabetic rats. African Health Science. 19 (3): 2491-2504. doi: 10.4314/ahs.v19i3.25
28. Furman BL (2021) Streptozotocin‐induced diabetic models in mice and rats. Current Protocols. 1: e78. doi: 10.1002/cpz1.78
29. Miaffo D, Ntchapda F, Mahamad TA, Maidadi B Kamanyi A (2021) Hypoglycemic, antidyslipidemic and antioxydant effects of Vitellaria paradoxa barks extract on high-fat diet and streptozotocin-induced type 2 diabetes rats. Metabolism Open. 9: 100071. doi: 10.1016/j.metop.2020.100071
30. Chatzigeorgiou A, Halapas A, Kalafatakis K, Kamper E (2009) The use of animal models in the study of diabetes mellitus. In Vivo. 23 (2): 245-258. PMID: 19414410.
31. AjayI AF, Akhigbe RE (2020) Staging of the estrous cycle and induction of estrus in experimental rodents: an update. Fertility Research and Practice. 6 (5): 1-15. doi: 10.1186/s40738-020-00074-3
32. Ellman GL (1959) Tissue sulfhydryl groups. Archives of Biochemistry and Biophysics. 82 (1): 70-77. doi: 10.1016/ 0003-9861(59)90090-6
33. Kakkar P, Das B, Viswanathan P (1984) A modified spectrophotometric assay of superoxide dismutase. Indian Journal of Biochemsitry and Biophysics. 21 (2): 130-132. PMID: 6490072.
34. Mkhwanazi BN, Serumula M R, Myburg RB, Van Heerden FR, Musabayane CT (2014) Antioxidant effects of maslinic acid in livers, hearts and kidneys of streptozotocin-induced diabetic rats: effects on kidney function. Renal Failure. 36 (3): 419-431. doi: 10.3109/0886022X.2013.867799
35. Alturkistani HA, Tashkandi FM, Mohammedsaleh ZM (2016) Histological stains: a literature review and case study. Global Journal of Health Science. 8 (3): 72-79. doi: 10.5539/gjhs.v8n3p72
36. Rakieten N (1963) Studies on the diabetogenic action of streptozotocin (NSC-37917). Cancer Chemotherapy Reports. 29: 91-98. PMID: 13990586.
37. Balsells M, García-patterson A, Solà i, Roqué M, Gich I, Corcoy R (2015) Glibenclamide, metformin, and insulin for the treatment of gestational diabetes: a systematic review and meta-analysis. British Medical Journal. 350: h 102. doi: 10.1136/bmj.h102
38. Krentz AJ, Bailey CJ (2005) Oral antidiabetic agents: current role in type 2 diabetes mellitus. Drugs. 65 (3): 385-411. doi: 10.2165/00003495-200565030-00005
39. Martins De Oliveira M, De Oliveira Andrade KF, Silva Lima GH, Casali Rocha T (2022) Metformin versus glyburide in treatment and control of gestational diabetes mellitus: a systematic review with meta-analysis. Einstein. (16794508): 20:eRW6155. doi: 10.31744/einstein_journal/2022RW6155
40. Cassina M, Dona M, DI Gianantonio E, Litta P, Clementi M (2014) First-trimester exposure to metformin and risk of birth defects: a systematic review and meta-analysis. Human Reproduction Update. 20 (5): 656-669. doi: 10.1093 /humupd/dmu022
41. Alzamendi A, Castrogiovanni D, Ortega HH, Gaillard RC, Giovambattista A, Spinedi E (2010) Parametrial adipose tissue and metabolic dysfunctions induced by fructose‐rich diet in normal and neonatal‐androgenized adult female rats. Obesity. 18 (3): 441-448. doi: 10.1038/oby.2009.255
42. Dhulkotia JS, Ola B, Fraser R, Farrell T (2010) Oral hypoglycemic agents vs insulin in management of gestational diabetes: a systematic review and metaanalysis. American Journal of Obstetrics and Gynecology. 203 (5): 457. e1-9. doi: 10.1016/j.ajog.2010.06.044
43. Reynolds RM, Denison FC, Juszczak E, Bell JL, Penneycard J, Strachan MW, Lindsay RS, Alexander CI, Love CD, Whyt S (2017) Glibenclamide and metformin versus standard care in gestational diabetes (GRACES): a feasibility open label randomised trial. BMC Pregnancy and Childbirth. 17 (1): 316. 1-9. doi: 10.1186/s12884-017-1505-3
44. Almulathanon AA, Mohammad JA, Fathi FH (2021) Comparative effects of metformin and glibenclamide on the redox balance in type 2 diabetic patients. Pharmacia. 68 (2): 327-332. doi:10.3897/pharmacia.68.e63365
45. Nunes PR, Bueno Pereira TO, Bertozzi Matheus M, Grandini NA, Siqueira JS, Correa CR, Abbade JF, Sandrim VC (2022) Glibenclamide increases nitric oxide levels and decreases oxidative stress in an in vitro model of preeclampsia. Antioxidants. 11 (8): 1620. doi: 10.3390/antiox11081620
Citation :
Sangoyomi et al. (2024) Evaluating the effects of insulin, metformin and glibenclamide on the pups’ prefrontal cortex and oxidative stress markers of streptozotocin-induced diabetic pregnant rats. Mediterr J Pharm Pharm Sci. 4 (1): 42-51. [Article number: 144]. https://doi.org/10.5281/zenodo.10627454