|    editor@medjpps.com

www.medjpps.com

Received date : 20-11-2025 Revised date : 22-01-2026 Accepted date : 28-01-2026 Published date : 31-03-2026

Mediterr J Pharm Pharm Sci 6 (1): 31-39, 2025

DOI: https://doi.org/10.5281/zenodo.18431203

Short Communication


Evaluation of in vitro antioxidant and anti-inflammatory potentials of Tapinanthus bangwensis leaves

Faith E. Ogunbameru, Kayode O. Karigidi, Emmanuel S. Akintimehin, Tope S. Omogunwa, Akinleye P. Makinde, and Foluso O. Adetuyi



Abstract :

Excessive production of reactive oxygen and nitrogen species under pathological conditions contributes to oxidative stress and chronic inflammation, both of which are central to the development of various diseases. Plant-derived antioxidants and anti-inflammatory agents have gained attention for their potential in mitigating these processes. This study evaluated the antioxidants and anti-inflammatory activities of Tapinanthus bangwensis leaf extracts using aqueous and acetone solvents. Phytochemical analyses revealed significantly higher total phenolic content (27.21±0.18 mg GAE/100 g) and total flavonoid content (18.69±0.31 mg QE/100 g) in the aqueous solvent compared to the acetone solvents. In antioxidants assays, total antioxidant capacity, reducing power, ferric reducing antioxidant power, and free radical scavenging (DPPH and ABTS), consistently showed greater activity in the aqueous solvent. In anti-inflammatory assays, the aqueous solvent demonstrated significantly higher inhibition of protein denaturation in bovine serum albumin (IC50=64.56±2.34 µg/mL) and egg albumin denaturation (IC50=389.45±3.50 µg/mL). Conversely, the acetone solvent exhibited stronger activity in trypsin inhibition (IC50=425.50±12.45 µg/mL) and hypotonic solution-induced hemolysis (IC50=107.75±2.87 µg/mL) assays, suggesting the presence of distinct bioactive compounds with membrane-stabilizing and enzyme-inhibitory effects. The findings supported the traditional use of Tapinanthus bangwensis extracts in the management of diseases. Tapinanthus bangwensis leaf is a promising source of natural therapeutic agents that could be used to prevent oxidative stress and inflammation in the body.

References

1. Karigidi ME, Fakunle OE, Karigidi KO. Antioxidant, antidiabetic and antifungal activities of leaf and bark ethanol extracts of Mangifera indica and their antagonistic biochemical effects. International Journal of Functional Nutrition. 2025; 6(1): 5. doi. 10.3892/ijfn.2025.46
2. Nizamuddin SFS. Polyphenol-rich black chokeberry (Aronia melanocarpa) and its therapeutic potential in type 2 diabetes mellitus: A comprehensive review. Mediterranean Journal of Medicine and Medical Sciences. 2025; 1(3): 31-42. doi: 10.5281/zenodo.17619107
3. Rafi IK, Aktaruzzaman M. An overview of therapeutic qualities and various applications of Centella asiatica. Mediterranean Journal of Pharmacy and Pharmaceutical Sciences. 2025; 5(1): 130-137. doi: 10.5281/zenodo. 14933667
4. Allison MO, Ukor VC, Ibrahim YA, Adeyemo JA. Leveraging natural antioxidants in disease prevention: Investigating the role of medicinal herbs in reducing oxidative stress and chronic disease. World Journal of Advanced Research and Reviews. 2025; 25(2): 2720-2733. doi: 10.30574/wjarr.2025.25.2.0593
5. Anwar MA, Sayed GA, Hal DM, Hafeez MSAE, Shatat AAS, Salman A, et al. Herbal remedies for oral and dental health: a comprehensive review of their multifaceted mechanisms including antimicrobial, anti-inflammatory, and antioxidant pathways. Inflammopharmacology. 2025; 33(3): 1085-1160. doi: 10.1007/s10787-024-01631-8
6. Akhlaq M, Alum MK, Alam MM. Anti-inflammatory potential of medicinal plants. Mediterranean Journal of Pharmacy and Pharmaceutical Sciences. 2022; 2(1): 13-21. doi: 10.5281/zenodo.6399381
7. Abdelrahim LA, Hiblo HF. Effect of Carica papaya Linn (Caricaceae) leaf extracts on reactive oxygen species production. Mediterranean Journal of Pharmacy and Pharmaceutical Sciences. 2025; 5(3): 52-56. doi: 10.5281/ zenodo.16739978
8. Obrador E, Salvador R, López-Blanch R, Jihad-Jebbar A, Vallés SL, Estrela JM. Oxidative stress, neuroinflammation and mitochondria in the pathophysiology of amyotrophic lateral sclerosis. Antioxidants (Basel). 2020; 9(9): 901. doi: 10.3390/antiox9090901
9. Ogbeide OK, Omorodion S, Akhidenor FI, Orazulike OJ, Igbinosa MO, Otortor D, et al. Comparative study on the phytochemical composition, amino acid profile, antioxidant, in vitro anti-inflammatory, and in vitro anti-diabetic activities on the leaf and stem bark of Acalypha indica. Mediterranean Journal of Medical Research. 2025; 2(2): 55-64. doi: 10.5281/zenodo.15579785
10. Enebeli L, Soremekun AD, Ajiboye BO, Jegede FB, Ijirigho C, Ben-Azu B, et al. Pharmacological evaluation of the effects of aqueous nut extract of Cyperus esculentus (Tiger nut) on convulsive episodes and anxiety-like behaviors in mice. Mediterranean Journal of Medical Research. 2025; 2(4): 196-203. doi: 10.5281/zenodo. 17507103
11. Falana MB, Dikwa MA, Asinmi MR, Nurudeen QO. Comparative composition, antioxidants, and antimicrobial effects of 3- and 7-day fermented seeds of Nigella sativa. Mediterranean Journal of Pharmacy and Pharmaceutical Sciences. 2024; 4(1): 22-34. doi: 10.5281/zenodo.10627412
12. Nwozo OS, Effiong EM, Aja PM, Awuchi CG. Antioxidant, phytochemical, and therapeutic properties of medicinal plants: A review. International Journal of Food Properties. 2023; 26(1): 359-388. doi: 10.1080/10942912.2022. 2157425
13. Edagbo DE, Ajiboye TO, Alowonle AA, Oyewole OB. Infestation and prevalence of the mistletoe, Tapinanthus bangwensis on host plants in Moor Plantation, Ibadan, Nigeria. Journal of Research in Forestry, Wildlife and Environment. 2024; 16(1): 105-114. ISBN: 979-8-89248-600-2.
14. Adeniyi AB, Oduntan AO. Harnessing underutilized crops for health management: A review of their therapeutic potential. Nigerian Journal of Horticultural Science. 2025; 29(3): 133-146. doi: 10.82552/njhs.v29i3.133-146
15. Saleh AY, Saputra DAY, Valentina R, Susanto TD. The miracle Moringa oleifera tree: A bibliometric review of its neuroprotective properties. Pharmacognosy Journal. 2025; 17(2): 258-276. doi: 10.5530/pj.2025.17.33
16. Edagbo DE, Oyetunji OJ. A comparative study of secondary metabolites, amino acids and protein profiles of the host-Parasite plants in the relationship between the African mistletoe, Tapinanthus bangwensis. Greener Journal of Biochemistry and Biotechnology. 2019; 6(1): 1-11. doi: 10.15580/GJBB.2019.1.070719132
17. Karthiraja AS, Kowsalya K, Durga Sri R, Revathi S, Karthika A. Extraction of flavonoids from natural sources using modern techniques: A review. Mediterranean Journal of Medicine and Medical Sciences. 2025; 1(3): 43-46. doi: 10.5281/zenodo.17738965
18. Lee JE, Jayakody JTM, Kim JI, Jeong JW, Choi KM, Kim TS, et al. The influence of solvent choice on the extraction of bioactive compounds from Asteraceae: A comparative review. Foods. 2024; 13(19): 3151. doi: 10.3390/foods 13193151
19. Velavan S. Phytochemical techniques - a review. World Journal of Science and Research. 2015; 1(2), 80-91. doi: Nil.
20. Fapetu AP, Karigidi KO, Ogunyemi OM, Akintimehin ES, Adetuyi FO. Antioxidant, antidiabetic and protective properties of Lawsonia inermis Linn. extracts on sodium nitroprusside-induced oxidative damage on isolated pancreas: in vitro, ex-vivo and in silico studies. Journal of Pharmacology and Biomedicine. 2025; 9(1): 772-790. doi: Nil.
21. Kim DO, Jeong SW, Lee CY. Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food Chemistry. 2003; 81(3): 321-326. doi: 10.1016/S0308-8146(02)00423-5
22. Karigidi KO, Ojebode ME, Olaiya CO. Effect of cooking on antioxidant and enzymes activity linked to carbohydrate metabolism and lipid peroxidation of eggplant (Solanum melongena). Tropical Agricultural Science. 2018; 41 (4): 1717-1730. doi: Nil.
23. Park Y-S, Jung S-T, Kang S-G, Heo BK, Arancibia-Avila P, Toledo F, et al. Antioxidants and proteins in ethylene-treated kiwi fruits. Food Chemistry. 2008; 107(2): 640-648. doi: 10.1016/j.foodchem.2007.08.070
24. Prieto P, Pineda M, Aguilar M. Spectrophotometric quantification of antioxidant capacity through the formation of phosphomolybdenum complex: Specific application to the determination of vitamin E. Analytical Biochemistry. 1999; 269(2): 337-341. doi: 10.1006/abio.1999.4019
25. Benzie IFF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of antioxidant power: The FRAP Assay. Analytical Biochemistry. 1996; 239(1): 70-76. doi. 10.1006/abio.1996.0292
26. Oyaizu M. Studies on products of Browning reactions antioxidant activities of products of browning reaction prepared from glucose amine. Japanese Journal of Nutrition and Dietetics. 1986; 44(6): 307-315. doi: 10.5264/ eiyogakuzashi.44.307
27. Gyamfi M, Yonamine M, Aniya Y. Free radical scavenging action of medicinal herbs from Ghana: Thonningia sanguine on experimentally induced liver injuries. General Pharmacology. 1999; 32(6): 661-667. doi. 10.1016/ S0306-3623(98)00238-9
28. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine. 1999; 26(9-10): 1231-1237. doi. 10.1016/S0891-5849(98)00315-3
29. Ahmed D, Zara S, Baig H. In vitro analysis of antioxidant activities of Oxalis corniculata Linn. fractions in various solvents. African Journal of Traditional, Complementary and Alternative Medicine. 2012;10(1):158-65. PMID: 24082338; PMCID: PMC3746370.
30. Boutennoun H, Boussouf L, Balli N, Mekircha F, Mimoune M, Rezig S, et al. Bioactive compounds, anti-oxidant and anti-inflammatory effects of Carob fruit and leaves (Ceratonia siliqua). Acta Scientiarum. Biological Sciences. 2025; 47: e73827. doi: 10.4025/actascibiolsci.v47i1.73827
31. Sikder MA, Rahman MA, Islam MR, Kaisar MA, Rahman MS, Rashid MA. In vitro antioxidant, reducing power, free radical scavenging and membrane stabilizing activities of Spilanthes calva. Latin America of Pharmacy. 2011; 30(4): 781-785. doi: Nil.
32. Pooja G, Shweta S, Patel P. Oxidative stress and free radicals in disease pathogenesis: A review. Discover Medicine. 2025; 2(1): 104. doi: 10.1007/s44337-025-00303-y
33. Bellanti F, Coda ARD, Trecca MI, Lo Buglio A, Serviddio G, Vendemiale G. Redox imbalance in inflammation: The interplay of oxidative and reductive stress. Antioxidants. 2025; 14(6): 656. doi: 10.3390/antiox14060656
34. Akintimehin ES, Karigidi KO, Charles DN, Ibijola AP, Adetuyi FO. Momordica charantia leaf extract attenuates cyanide toxicity by enhancing antioxidant, anti-inflammatory and cholinergic response in rats' brain. Tropical Journal of Natural Product Research. 2025; 9(2): 646-652. doi: 10.26538/tjnpr/v9i2.29
35. Chandimali N, Bak SG, Park EH, Lim HJ, Won YS, Kim EK, et al. Free radicals and their impact on health and antioxidant defenses: A review. Cell Death Discovery. 2025; 11(1): 19. doi: 10.1038/s41420-024-02278-8
36. Karigidi KO, Akintimehin ES, Ogunbameru FE, Adetuyi FO. Use of Clerodendrum volubile in wheat bread: Impact on antioxidant, proximate, minerals and sensory properties. Acta Universitatis Cinbinesis, Series E: Food Technology. 2021; 25(2): 233-242. doi: 10.2478/aucft-2021-0021
37. Truong DH, Nguyen DH, Ta NTA, Bui AV, Do TH, Nguyen HC. Evaluation of the use of different solvents for phytochemical constituents, antioxidants, and in vitro anti-inflammatory activities of Severinia buxifolia. Journal of Food Quality. 2019; 2019(1): 8178294. doi. 10.1155/2019/8178294
38. Karigidi KO, Ojebode ME, Anjorin OJ, Omiyale BO, Olaiya CO. Antioxidant activities of methanol extracts of Curculigo pilosa rhizome and Gladiolus psittascinus corm against lipid peroxidation in rat’s liver and heart. Journal of Herbs, Spices and Medicinal Plants. 2019; 25(1): 1-10. doi: 10.1080/10496475.2018.1510457
39. Belounis Y, Moualek I, Sebbane H, Ait Issad H, Saci S, Saoudi B, et al. Potential natural antioxidant and anti-inflammatory properties of Carthamus caeruleus L. root aqueous extract: An in vitro evaluation. Processes 2025; 13(3): 878. doi: 10.3390/pr13030878
40. Narayanan KB. Enzyme-based anti-inflammatory therapeutics for inflammatory diseases. Pharmaceutics. 2025; 17(5): 606. doi: 10.3390/pharmaceutics17050606
41. Milinčić DD, Stanisavljević NS, Pešić MM, Kostić AŽ, Stanojević SP, Pešić MB. The bioaccessibility of grape-derived phenolic compounds: An overview. Foods. 2025; 14(4): 607. doi: 10.3390/foods14040607

Citation :

Ogunbameru et al. Evaluation of in vitro antioxidant and anti-inflammatory potentials of Tapinanthus bangwensis leaves. Mediterr J Pharm Sci. 2026; 6(1): 31-39. [Article number: 238]. https://doi.org/10.5281/zenodo.18431203

Share :