|    editor@medjpps.com

www.medjpps.com

Received date : 12-05-2022 Revised date : 10-06-2022 Accepted date : 14-06-2022 Published date : 30-06-2022

Mediterr J Pharm Pharm Sci 2 (2): 52-63, 2022

DOI: https://doi.org/10.5281/zenodo.6780500

Original Research


Incidence of agranulocytosis adverse effect of antipsychotic drugs in patients with schizophrenia

Suhera M. Aburawi, Mabruk E. Erhuma, Mohammed A. Mussa



Abstract :

Schizophrenia is treated with antipsychotic drugs and is a chronic neuropsychiatric disorder. The influence of antipsychotics on the cytokine systems may be responsible for their clinical efficacy in schizophrenia. Granulocytopenia and agranulocytosis are severe side effects of antipsychotic therapy. The objective of this study was to estimate the incidence of drug-associated agranulocytosis in newly diagnosed schizophrenic patients and to evaluate the risk factors and outcomes. Seven participant groups were designed. Healthy persons as control. Schizophrenic patients before treatment. Schizophrenic patients after one month of treatment. Schizophrenic patients after two months of treatment. Schizophrenic patients after three months of treatment. Schizophrenic patients after chronic treatments. Schizophrenic patients one month after chronic treatment. This study included screening for the expression and function of circulating leukocyte granulocyte-macrophage colony-stimulating factor receptors, and screening of the patient's biochemistry and haematology picture. Granulocyte-macrophage colony-stimulating factor expression was decreased after antipsychotic treatment for one month and continued to decline after two months of treatment. Granulocyte-macrophage colony-stimulating factor expression starts to increase after the two months treatment and continues growing in controls or newly diagnosed schizophrenics or after chronic treatment. Complete blood counts were not changed compared. Liver function showed a transient increase in serum alkaline phosphatase after one and two months of treatment. All other parameters were not changed. Kidney function showed that urea and creatinine levels were within the normal range during the different treatments. Concerning lipid profile, low density lipoprotein levels were increased after one month, two months of treatment and after chronic administration of the antipsychotic drugs. It is concluded that antipsychotic treatment produces a decrease in granulocyte-macrophage colony-stimulating factor expression; the decrease reaches the maximum effect after two months, and then starts to increase back to normal levels. A transient increase in serum alkaline phosphatase in the first two months of treatment. Urea and creatinine levels and lipid profile were within normal range, except low density lipoproteins levels were increased during the two months of treatment and after chronic administration of the antipsychotic drugs.


References

1. Kehrer C, Maziashvili N, Dugladze T, Gloveli T (2008) Altered excitatory-inhibitory balance in the nmda-hypofunction model of schizophrenia. Frontiers in Molecular Neuroscience. 1: 6. doi: 10.3389/neuro.02.006.2008
2. Becker T, Kilian R (2006) Psychiatric services for people with severe mental illness across western Europe: what can be generalized from current knowledge about differences in provision, costs and outcomes of mental health care? Acta Psychiatrical Scandinavica Supplementum. (429): 9-16. doi: 10.1111/j.1600-0447.2005.00711.x
3. Pollmächer T, Haack M, Schuld A, Kraus T, Hinze-Selch D (2000) Effects of antipsychotic drugs on cytokine network. Journal of Psychiatric Research. 34 (6): 369-382. doi: 10.1016/S00223956(00)000327
4. van Staa TP, Boulton F, Cooper C, Hagenbeek A, Inskip H, Leufkens HG (2003) Neutropenia and agranulocytosis in England and Wales: incidence and risk factors. American Journal of Haematology. 72 (4): 248-54. doi: 10.1002 /ajh.10295
5. Gasson J (1991) Molecular physiology of granulocyte-macrophage colony-stimulating factor. Blood. 77 (6): 1131-1145. doi: Nil.
6. Lencz T, Morgan TV, Athanasiou M, Dain B, Reed CR, Kane JM, Kucherlapati R, Malhotra AK (2007) Converging evidence for a pseudoautosomal cytokine receptor gene locus in schizophrenia. Molecular Psychiatry. 12 (6): 572-580. doi: 10.1038/sj.mp.4001983
7. Whiteford HA, Degenhardt L, Rehm J, Baxter AJ, Ferrari AJ, Erskine HE, Charlson FJ, Norman RE, Flaxman AD, Johns N, Burstein R, Murray CJL, Vos T (2013) Global burden of disease attributable tomental and substance use disorders: findings from the global burden of disease study 2010. Lancet. 382 (9904): 1575-1586. doi: 10.1016/ S0140-6736(13)61611-6
8. Tandon, R, Keshavan MS, Nasrallah HA (2008) Schizophrenia, “just the facts” what we know in 2008. 2. Epidemiology and etiology. Schizophrenia Research. 102 (1-3): 1-18. doi: 10.1016/j.schres.2008.04.011
9. Whalley HC, Simonotto E, Marshall I, Owens DG, Goddard NH, Johnstone EC, Lawrie, SM (2005) Functional disconnectivity in subjects at high genetic risk of schizophrenia. Brain. 128 (9): 2097-2108. doi: 10.1093/brain/ awh556
10. Whitford TJ, Kubicki M, Shenton ME (2011) Diffusion tensor imaging, structural connectivity, and schizophrenia. Schizophrenia Research and Treatment. 2011: 709523. doi: 10.1155/2011/709523
11. Sh, F, Yap PT, Gao W, Lin W, Gilmore JH, Shen D (2012) Altered structural connectivity in neonates at genetic risk for schizophrenia: a combined study using morphological and white matter networks. Neuroimage. 62 (3): 1622-1633. doi: 10.1016/j.neuroimage.2012.05.026
12. Curčić-Blake B, Nanetti L, van der Meer L., Cerliani L, Renken R, Pijnenborg GH, Aleman A (2013) Not on speaking terms: hallucinations and structural network disconnectivity in schizophrenia. Brain Structure and Function. 220 (1): 407-418. doi: 10.1007/s00429-013-0663-y
13. Straube B, Green A, Sass K, Kircher T (2014) Superior temporal sulcus disconnectivity during processing of metaphoric gestures in schizophrenia. Schizophrenia Bulletin. 40 (4): 936-944. doi: 10.1093/schbul/sbt110
14. Drzyzga Ł, Obuchowicz E, Marcinowska A, Herman ZS (2006) Cytokines in schizophrenia and the effects of antipsychotic drugs. Brain Behavior and Immunity. 20 (6): 532-545. doi: 10.1016/j.bbi.2006.02.002
15. Song C, Lin A, Kenis G, Bosmans E, Maes M (2000) Immunosuppressive effects of clozapine and haloperidol: enhanced production of the interleukin-1 receptor antagonist. Schizophrenia Research. 42 (2): 157-164. doi: 10.1016 /S0920-9964(99)00116-4
16. Flanagan RJ, Dunk L (2008) Haematological toxicity of drugs used in psychiatry. Human Psychopharmacology. 1: 27-41. doi: 10.1002/hup.917
17. Pessina A, Turlizzi E, Bonomi A, Guizzardi F, Cavicchini L, Croera C, Bareggi S (2006) In vitro toxicity of clozapine, olanzapine, and quetiapine on granulocyte-macrophage progenitors (GM-CFU). Pharmacopsychiatry. 39 (1): 20-22. doi: 10.1055/s-2006-931475
18. Dettling M, Sachse C, Müller-Oerlinghausen B, Roots I, Brockmöller J, Rolfs A, Cascorbi I (2000) Clozapine-induced agranulocytosis and hereditary polymorphisms of clozapine metabolizing enzymes: no association with myeloperoxidase and cytochrome P4502D6. Pharmacopsychiatry. 33 (6): 218-220. doi: 10.1055/s-2000-8359
19. Gardner I, Popović M, Zahid N, Uetrecht, JP (2005) A comparison of the covalent binding of clozapine, procainamide, and vesnarinone to human neutrophils in vitro and rat tissues in vitro and in vivo. Chemical Research in Toxicology. 18 (9): 1384-1394. doi: 10.1021/tx050095o
20. Mosyagin I, Dettling M, Roots I, Mueller-Oerlinghausen B, Cascorbi I (2004) Impact of myeloperoxidase and NADPH-oxidase polymorphisms in drug-induced agranulocytosis. Journal of Clinical Psychopharmacology. 24 (6): 613-617. doi: 10.1097/01.jcp.0000144891.52858.a6
21. Husain Z, Almeciga I, Delgado JC, Clavijo OP, Castro JE, Belalcazar V, Pinto C, Zuñiga J, Romero V, Yunis EJ (2006) Increased FasL expression correlates with apoptotic changes in granulocytes cultured with oxidized clozapine. Toxicology and Applied Pharmacology. 214 (3): 326-334. doi: 10.1016/j.taap.2006.01.008
22. Dunk LR, Annan LJ, Andrews CD (2006) Rechallenge with clozapine following leucopenia or neutropenia during previous therapy. The British Journal of Psychiatry. 188: 255-263. doi: 10.1192/bjp.188.3.255
23. Cordes J, Streit M, Loeffler S, von Wilmsdorff M, Agelink M, Klimke A (2004) Reversible neutropenia during treatment with olanzapine: three case reports. World Journal of Biological Psychiatry. 5 (4): 230-234. doi: 10.1080 /15622970410029938
24. Duggal HS, Gates C, Pathak PC (2004) Olanzapine-induced neutropenia: mechanism and treatment. Journal of Clinical Psychopharmacology. 24 (2): 234-235. doi: 10.1097/01.jcp.0000117428.05703.16
25. Stergiou V, Bozikas VP, Garyfallos G, Nikolaidis N, Lavrentiadis G, Fokas K (2005) Olanzapine-induced leucopenia and neutropenia. Progress in Neuro-Psychopharmacology and Biological Psychiatry. 29 (6): 992-994. doi: 10.1016/j.pnpbp.2005.04.025
26. Stip E, Langlois R, Thuot C, Mancini-Marïe A (2007) Fatal agranulocytosis: the use of olanzapine in a patient with schizophrenia and myelodysplasia. Progress in Neuro-Psychopharmacology and Biological Psychiatry. 31 (1): 297-300. doi: 10.1016/j.pnpbp.2006.08.005
27. Barnas C, Zwierzina, H, Hummer M, Sperner-Unterweger B, Stern A. Fleischhacker W W (1992) Granulocyte-macrophage colony stimulation factor (GM-CSF) treatment of clozapine-induced agranulocytosis: a case report. The Journal of Clinical Psychiatry. 53 (7): 245-247. doi: Nil.
28. Oren R, Granat E, Shtrussberg S, Matzner Y (1993) Case Reports: Clozapine induced agranulocytosis treated with granulocyte macrophage colony stimulating factor. The British Journal of Psychiatry. 162 (5): 686687. doi: 10.1192 /bjp.162.5.686
29. Francisco-Cruz A, Aguilar-Santelises M, Ramos-Espinosa O, Mata-Espinosa D, Marquina-Castillo B, Barrios-Payan J, Hernandez-Pando R. (2014) Granulocyte-macrophage colony-stimulating factor: not just another haematopoietic growth factor. Medical Oncology. 31 (1): 774. doi: 10.1007/s12032-013-0774-6
30. McLay RN, Kimura M, Banks WA, Kastin AJ (1997) Granulocyte macrophage factor crosses the blood brain and blood spinal cord barriers. Brain. 120 (11): 2083-2091. doi: 10.1093/brain/120.11.2083 20832091
31. Carvajal A, Martin Arias LH, Jimeno N (2016) Antipsychotic drugs. In: J. K. Aronson (Eds.), Side effects of drugs annual. 38. Elsevier Ltd. ISBN: 9780444637185.
32. Kim NK, Choi BH, Huang X, Snyder BJ, Bukhari S, Kong TH, Park H, Park HC, Park S R, Ha Y (2009) Granulocyte-macrophage colony-stimulating factor promotes survival of dopaminergic neurons in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced murine Parkinson's. European Journal of Neuroscience. 29 (5): 891-900. doi: 10.1111/j.1460-9568.2009.06653.x
33. Kosloski LM, Kosmacek EA, Olson KE, Mosley RL, Gendelman HE (2013) GM-CSF induces neuroprotective and anti-inflammatory responses in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine intoxicated mice. Journal of Neuro-immunology. 265 (1-2): 1-10. doi: 10.1016/j.jneuroim.2013.10.009
34. Ha Y, Park, HS, Park CW, Yoon SH, Park SR, Hyun DK, Kim EY, Park HC (2005) Synthes Award for Resident Research on Spinal Cord and Spinal Column Injury: granulocyte macrophage colony stimulating factor (GM-CSF) prevents apoptosis and improves functional outcome in experimental spinal cord contusion injury. Clinical Neurosurgery. 52: 341-347. doi: Nil.
35. Choudhury ME, Sugimoto K, Kubo M, Nagai M, Nomoto M, Takahashi H, Yano H, Tanaka J (2011) A cytokine mixture of GM-CSF and IL-3 that induces a neuroprotective phenotype of microglia leading to amelioration of (6-OHDA)-induced Parkinsonism of rats. Brain and Behavior. 1 (1): 26-43. doi: 10.1002/brb3.11
36. Mangano EN, Peters S, Littlejohn D, So R, Bethune C, Bobyn J, Clarke M, Hayley S (2011) Granulocyte macrophage-colony stimulating factor protects against substantia nigra dopaminergic cell loss in an environmental toxin model of Parkinson’s disease. Neurobiology of Disease. 43: 99-112. doi: 10.1016/j.nbd.2011.02.011
37. American Psychiatric Association. Task Force on DSM-IV (2000) Diagnostic and Statistical Manual of Mental Disorders: DSM-IV-TR. ISBN 978-0-89042-025-6.
38. Hunt MJ, Olszewski M, Piasecka J, Whittington MA, Kasicki S (2015) Effects of NMDA receptor antagonists and antipsychotics on high frequency oscillations recorded in the nucleus accumbens of freely moving mice. Psychopharmacology. 232 (24): 4525-4535. doi. 10.1007/s00213-015-4073-0
39. Balu DT (2016) The NMDA receptor and schizophrenia: from pathophysiology to treatment. Advances in Pharmacology. 76: 351-382. doi: 10.1016/bs.apha.2016.01.006
40. Krzystanek M, Pałasz A (2019) NMDA receptor model of antipsychotic drug-induced hypofrontality. International Journal of Molecular Sciences. 20 (6): 1442. doi. 10.3390/ijms20061442
41. Krzystanek M, Bogus K, Pałasz A, Krzystanek E, Worthington JJ, Wiaderkiewicz R (2015) Effects of long-term treatment with the neuroleptic's haloperidol, clozapine and olanzapine on immunoexpression of NMDA receptor subunits NR1, NR2A and NR2B in the rat hippocampus. Pharmacological Reports. 67 (5): 965-969. doi: 10.1016/ j.pharep.2015.01.017
42. Krzystanek M, Bogus K, Pałasz A, Wiaderkiewicz A, Filipczyk Ł, Rojczyk E, Worthington J, Wiaderkiewicz R (2016) Extended neuroleptic administration modulates NMDA-R subunit immunoexpression in the rat neocortex and diencephalon. Pharmacological Reports. 68 (5): 990-995. doi: 10.1016/j.pharep.2016.05.009
43. Barygin OI, Nagaeva EI, Tikhonov DB, Belinskaya DA, Vanchakova NP, Shestakova, NN (2017) Inhibition of the NMDA and AMPA receptor channels by antidepressants and antipsychotics. Brain Research. 1660: 58-66. doi: 10.1016/j.brainres.2017.01.028
44. Ilyin VI, Whittemore ER, Guastella J, Weber E, Woodward RM (1996) Subtype-selective inhibition of N-methyl-D-aspartate receptors by haloperidol. Molecular Pharmacology. 50 (6): 1541-1550. PMID: 8967976.
45. Molina V, Sanz J, Reig S, Martínez R, Sarramea F, Luque R, Benito C, Gispert JD, Pascau J, Desco M (2005) Hypofrontality in men with first-episode psychosis. The British Journal of Psychiatry. 186 (3): 203-208. doi: 10.1192/bjp.186.3.203
46. Zhan Y, Zhou Y, Zheng W, Liu W, Wang C, Lan X, Deng X, Xu Y, Zhang B, Ning Y (2020) Alterations of multiple peripheral inflammatory cytokine levels after repeated ketamine infusions in major depressive disorder. Translational Psychiatry. 10 (1): 246. doi: 10.1038/s41398-020-00933-z
47. Diazgranados N, Ibrahim L, Brutsche NE, Newberg A, Kronstein P, Khalife S, Kammerer WA, Quezado Z, Luckenbaugh DA, Salvadore G, Machado-Vieira R, Manji HK, Zarate C A (2010) A randomized add-on trial of an N-methyl-D-aspartate antagonist in treatment-resistant bipolar depression. Archives of General Psychiatry. 67 (8): 793-802. doi. 10.1001/archgenpsychiatry.2010.90
48. Garcia-Unzueta MT, Herran A, Sierra-Biddle D, Amad, JA, Vázquez-Barquero JL, Alvarez C (2003) Alterations of liver function test in patients treated with antipsychotics. Journal of Clinical Laboratory Analysis. 17 (6): 216-218. doi: 10.1002/jcla.10094
49. Rang HP, Ritter JM, Flower RJ, Henderson G (2018) Antipsychotic drugs. In: Rang & Dale’s Pharmacology. 9th ed. (pp. 559). Elsevier Churchill Livingstone. United States of America. ISBN: 9780702074486.
50. National Library of Medicine (2022) Clinical and research information on drug-induced liver injury. Bookshelf ID: NBK547852. PMID: 31643176.
51. Kaplan MM (1972) Alkaline phosphatase. The New England Journal of Medicine. 286 (4): 200-202. doi: 10.1056/ nejm 197201272860407
52. Li-Fern H, Rajasoorya C (1999) The elevated serum alkaline phosphatase-the chase that led to two endocrinopathies and one possible unifying diagnosis. European Journal of Endocrinology. 140 (2): 143-147. doi: 10.1530/eje.0. 1400143
53. Roohafza H, Khani A, Afshar H, Garakyaraghi M, Amirpour, A, Ghodsi B (2013) Lipid profile in antipsychotic drug users: A comparative study. ARYA Atherosclerosis. 9 (3): 198-202. PMID: 23766777.
54. Skrede S, Steen VM, Fernø J (2013) Antipsychotic-induced increase in lipid biosynthesis: activation through inhibition? The Journal of Lipid Research 54: 307-309. doi: 10.1194/jlr.E034736
55. Summerly R, Yardley H (1965) The effect of a substituted fluorobutyrophenone (haloperidol) on the metabolism of sterols in rat skin. Biochemical Journal. 96: 30. doi: Nil.
56. Adams CM, Goldstein JL, Brown MS (2003) Cholesterol-induced conformational change in SCAP enhanced by Insig proteins and mimicked by cationic amphiphiles. Proceeding of the National Academy of Science of the United States of America. 100: 10647-10652. doi: 10.1073/pnas.1534833100
57. Yang LH, Chen TM, Yu ST, Chen YH (2007) Olanzapine induces SREBP-1-related adipogenesis in 3T3-L1 cells. Pharmacology Research. 56: 202-208. doi: Nil.
58. Huang TL, Chen JF (2005) Serum lipid profiles and schizophrenia: effects of conventional or atypical antipsychotic drugs in Taiwan. Schizophrenia Research. 80 (1): 55-59. doi: 10.1016/j.schres.2005.05.001

Citation :

Aburawi et al. (2022) Incidence of agranulocytosis adverse effect of antipsychotic drugs in patients with schizophrenia. Mediterr J Pharm Pharm Sci. 2 (2): 52-63. [Article number: 68]. https://doi.org/10.5281/zenodo.6780500

Share :